Advanced Procedural Modeling of Architecture — Supplemental Material

Michael Schwarz

Pascal Miiller

Esri R&D Center Zurich

Overview

In this document, we first elaborate on some aspects mentioned dur-
ing the discussion offered in the paper (Sec. 1). Subsequently, we
discuss how shape trees are realized in our prototype and what ef-
fects the various actions have on such a tree (Sec. 2). A concise
reference for CGA++ is then presented in Sec. 3, covering many
details omitted in the paper. Finally, definitions for some functions
and rules occurring in the paper’s examples are given (Sec. 4), ex-
emplifying both more advanced use and the expressive power of
CGA++.

1 Further discussion

In the following, we provide more details on some aspects only
hinted at in the paper’s discussion section. After taking a closer
look at means to guide the derivation process, we investigate exist-
ing ad-hoc solutions for some specific problems, comment on the
technical necessity of the new language features, and assess alter-
native solution approaches using non-grammar languages.

1.1 Guidance of derivation order

The order in which shapes are refined during the derivation process
ultimately affects whether the shapes a contextual query is supposed
to consider have already been created when executing this query
(and hence can be considered). Consequently, a certain influence
on the derivation order is necessary to correctly handle such depen-
dencies. To this end, the original CGA shape [Miiller et al. 2006]
allows statically assigning priorities to rules (this concept is absent
in all (commercial) successor versions). Pursuing a sequential exe-
cution model, where one rule is applied at a time, always (one of)
the highest-priority rule(s) currently applicable is selected as next
rule to execute. Hence, priorities enable structuring the derivation
process into global development stages, where all rules belonging to
a certain stage are assigned the same priority. This is made more ex-
plicit with evaluation phases [Steinberger et al. 2014], which man-
date that a rule may only yield symbols corresponding to rules of
equal or lower priority and hence enable the concurrent execution
of rules assigned to the current phase. A related, more general ap-
proach is construction stages [Schwarz and Wonka 2014], where
instead of statically assigning each rule to a stage, an operation is
provided that signals having reached a certain stage and blocks until
all other derivation branches have reached this stage, too. Because
the stage is provided as an argument, it may be chosen dynamically,
and an arbitrary number of stages is supported.

In CGA++, events provide a more flexible and convenient device
for guiding the derivation order. Generally, each active branch
of the derivation process can execute its actions independently
from all other branches (allowing for parallel execution of multi-
ple branches). A dependency on other branches is explicitly ex-
pressed by raising or waiting on an event, and if such an action is
encountered, the branch gets suspended until the dependency can
be resolved. An event hence serves as synchronization point, indi-
cating having reached a certain development stage. However, be-
cause not all derivation branches have to participate in a certain
event and event groups further enable restricting events to subtrees,
local and hierarchical dependencies can be conveniently expressed.
In particular, it is not necessary to impose a global order on how

all dependencies occurring during the whole derivation process are
to be resolved, as would be required by construction stages (rule
priorities further involve duplicating rules whenever they are to be
applied in multiple stages), and which easily becomes challenging
for the grammar writer. For instance, seemingly simple cases such
as where each facade of a building is refined in multiple stages, but
only once the front facade has been fully created, the refinement of
the other ones can commence (e.g., due to performing queries on
the front facade), are cumbersome to handle globally. By contrast,
events allow expressing the dependencies within a facade indepen-
dently from those among fagades.

1.2 Ad-hoc solutions for specific tasks

For a few selected tasks that critically depend on information from
other shapes, dedicated solutions exist. The functionality offered
by them can often be replicated in CGA++ using just its available
general language features. Moreover, thanks to its enhanced ex-
pressiveness, CGA++ usually enables augmenting the capabilities
of such ad-hoc solutions. Note, however, that even with CGA++,
performance and efficiency considerations may encourage incorpo-
rating dedicated support for addressing frequent use cases, includ-
ing offering special operations and performing specific optimiza-
tions (e.g., using a spatial acceleration structure for certain common
queries).

Occlusion The ability to determine whether the current shape is
occluded is crucial for many applications. One important aspect is
selecting which occluders are considered in such tests (and ensuring
their existence), but existing solutions are rather limited (and some-
times surprisingly vague) in this regard. For example, in classical
CGA shape [Miiller et al. 2006], the query function Shape . occ of-
fers several options to this end, such as all other existing shapes,
shapes with a certain symbol, and all shapes except the current
shape’s ancestors ("noparent"). However, the respective set of
shapes is often not well defined and depends on the concrete deriva-
tion order (which often cannot be influenced sufficiently). For in-
stance, assume a split yields multiple shapes, and the rule associ-
ated with them first tests for occlusion with "noparent" and en-
larges the shape if unoccluded, emitting an empty shape otherwise.
Then, the order in which these shapes are refined by this rule (which
cannot be influenced by priorities) affects which are enlarged and
which are replaced by an empty shape (because they are occluded
by one of the already processed and hence enlarged parts). Sim-
ilarly, the PGA system [Steinberger et al. 2014] basically allows
querying any shape generated in a previous evaluation phase, but no
details are given on how such a shape is identified, both language-
wise and implementation-wise (among others, such a shape must
be stored persistently in global memory on the GPU, which entails
challenges that are not even hinted at). By contrast, the extension by
Schwarz and Wonka [2014] supports testing against shapes that ex-
ist at a certain construction stage, which is well defined (but slightly
limited, though). Esri’s CityEngine [Esri 2014] takes a different
approach and first constructs a ghost shape tree by evaluating all
occlusion tests to false, and then tests against it during the actual
derivation process. Consequently, only a test against the shapes in
the ghost tree is possible.

In CGA++, arbitrary shapes of the shape tree can be accessed and
their existence be enforced. Therefore, more fine-grained occlusion

queries become possible, which may involve spatial query functions
such as overlaps. In particular, all mentioned solutions could be
expressed in CGA++ (even a ghost shape tree, irrespective of how
desirable that is).

Alignment Classical CGA shape [Miiller et al. 2006] offers snap-
ping as a means to support basic alignment. Special snap shapes
(planes and lines) can be emitted, both automatically and via oper-
ations, and may then be taken into account by subdivision opera-
tions, adjusting split positions to align with such snap shapes. Al-
though helpful for several cases, snapping provides only a limited
form of control. By contrast, CGA++ features an expressiveness
that allows realizing more complex alignments and exercising full
control. In particular, referencing other shapes and coordination via
events essentially enable almost unlimited possibilities.

Connecting shapes Targeting complex interconnected struc-
tures, the system by Krecklau and Kobbelt [2011] allows collecting
(potentially multi-dimensional) lists of source and target rectangles
and subsequently creating connections between them. One inher-
ent limitation of their language extension realizing this approach
is that it strongly depends on a strictly sequential execution of the
grammar, where a rule basically constitutes a subroutine call.

With CGA++, compiling lists of source and target shapes is di-
rectly supported, and multiple options exist. For instance, all source
shapes could be flagged by setting an attribute and then be collected
by querying the shape tree, where events can be employed to ensure
that all required shapes exist. Complex patterns of which source
shape should be connected to which target shape are possible (as in
their system), where list and spatial query functions may be utilized
for establishing such a pattern. Actually connecting two shapes can
be achieved with an according operation; in our prototype, we cur-
rently only offer the operation connectTo for creating a connecting
tube between two polygons. Supporting more advanced connection
primitives, such as deformable beams or rigid chains from Krecklau
and Kobbelt’s system, would be possible, though.

1.3 Technical necessity of new language features

Several new language elements of CGA++ are primarily introduced
to allow a convenient syntax and form of expression, while not be-
ing required from a purely technical point of view. Apart from
syntactical sugar such as the chain operator, one supposedly non-
obvious example in this regard is rule values. Although these are
unarguably highly useful, they actually can be simulated with al-
ready existing language elements; that is, granting first-class citi-
zenship to rules (unlike in the case of shapes) does not extend what
can be modeled. Concretely, any anonymous rule can be replaced
by an according ordinary (named) rule, turning all captured vari-
ables into explicit arguments. Each named rule can be assigned a
unique identifier, and thus any rule value can be mapped to such an
identifier and a list of arguments. Utilizing a conditional construct
with a branch for each possible identifier, the rule corresponding
to an identifier may then be invoked with the given arguments. An
analogous observation holds in the case of functions.

1.4 Approaches using hon-grammar languages

In the quest of achieving an integrated solution to overcome the
limitations of current grammar languages, one may consider resort-
ing to a (suitable) more general, non-grammar language. However,
while this typically increases the available expressive power sig-
nificantly with respect to a grammar language, thus (in principle)
enabling dealing with the targeted advanced modeling scenarios,
it also entails some practical challenges and inconveniences. First,
the derivation described by a grammar has to be manually replicated

in an appropriate form in this language, which may be complicated
by a more limited offer of domain-specific abstractions and involves
abandoning at least some characteristics of grammars, such as com-
pact and focused syntax or ease of editing. Moreover, this must be
done in a way that transcends the limitations of existing grammar
formulations and allows realizing the considered modeling task. Fi-
nally, a concrete solution for this task has to be devised.

One potential candidate for pursuing this direction is employing a
scripting language in a standard modeling software such as Maya,
Houdini, or Blender. Another possibility is using languages for gen-
erative modeling, such as GML [Havemann 2005]. Hohmann et
al. [2010] even present a library of GML functions that cover a nar-
row subset of the operations offered in CGA shape and show how
rules can be written as functions. However, being a Postscript-like
stack-based language, GML affords a syntax and way of expression
that deviate considerably from more mainstream languages and is
hence challenging for non-programmers. An interesting further op-
tion is extending the system presented by Leblanc et al. [2011],
where components (shapes) are created and modified by a sequence
of statements. It includes support for queries to select components,
loops to iterate over a set of components, and operations on compo-
nents. Basically, each execution of an action during the derivation
of a grammar has to be written as a separate statement, with the
sequence of statements explicitly encoding the derivation order.

2 Implementation details for shape trees

Using shapes as first-class citizens and offering access to the shape
tree in a grammar ultimately requires any concrete implementation
to decide on the structure of the shape tree and the modifications of
the tree caused by the various kinds of actions. In the following, we
provide details on the choices made in our implementation. These
take several requirements and considerations into account:

(a) Intermediate results that are assigned a label in a rule body
may be referenced not just within this rule body but also using
the access operator : : (with the intermediate result’s parent as
left-hand operand and the label as right-hand operand). This
latter option implies that such a labeled intermediate result
must be part of the shape tree. On the other hand, it should
not be included in the final model.

(b) Whenever an action, such as a subdivision operation, in-
troduces new independent derivation branches, the order in
which these and the current branch are executed should not
influence the structure of the resulting shape tree, including
the order of any node’s children.

(c) Temporary shapes, such as the current one (this), the result
of a function on a shape, or the tree returned by spawning a
new (sub)derivation process on a given shape, have a mean-
ingful parent and hence should allow access to it. This sug-
gests that such shapes are somehow embedded in the parent’s
shape tree. On the other hand, these shapes need not (and we
think should not) be accessible via this parent.

Motivated by the last concern (c), we distinguish between proper
children and anonymous children. A node keeps an ordered list of
all its proper children; consequently, such children can be directly
accessed from their parent. By contrast, a node is estranged from its
anonymous children: it may know about their existence but it does
not know their identities and hence cannot access them. (Knowing
about the existence of anonymous children can be beneficial for
memory management purposes.) Thus, each node (except for the
root node) has a parent, and it stores a reference to this parent.

Moreover, we associate a visibility with each node to address the
concerns (a) and (b). Only visible nodes are considered by the

traversal functions offered, and the final model is defined by the
set of all visible nodes with no visible descendants, often referred
to as leaf shapes. An internal node is always visible if any of its
proper children is visible. Invisible nodes are used to represent la-
beled intermediate results as well as (evolving) structures without
any children (yet), such as a group node where no action succeeding
its defining group operation was executed (so far).

In our implementation, shapes are exposed as being weakly im-
mutable to grammars: no existing data is ever modified but new
structural information can be added to a tree. In particular, an in-
visible node may become visible; this change is recursively propa-
gated upward to the parent unless the node is an anonymous child.
Furthermore, child nodes can be added, where proper children may
only be appended to their parent’s list. Overall, this enables a con-
sistent view on the tree without having to restrict the independent
execution of different derivation branches.

Building on this specific concept of a shape tree, we provide an
overview of the effects of various actions on the shape tree in the
following (see Fig. 1).

Rule execution When an invoked rule is executed for a shape, in
a setup step a new derivation branch is created, and a copy of the
shape is added as anonymous child to this shape node (Fig. 1 a). It
represents the (initial) current state during the execution and is com-
monly referred to as current shape (exposed via this). Note that
such copies are cheap, as the payload of a node, most notably the
shape’s geometric data, can be (and actually is whenever possible)
shared with other nodes.

Shape instantiation When the current shape is instantiated, for
example by a symbol (causing the invocation of the according rule),
a copy is made, named by the symbol and its arguments (if any), and
added as a visible, proper child to the parent of the current shape’s
node (Fig. 1¢). If a label is provided for the action, this label is
also assigned to the child node, allowing its access by name when
navigating the tree.

NIL Analogously, the NIL operation adds an empty shape as vis-
ible, proper child to the current shape’s parent (Fig. 1d). Among
others, it is routinely employed in subdivision operations to remove
a part from the final result.

Shape(-modifying) operations Respecting the weak immutabil-
ity of nodes, operations modifying the state of the current shape
don’t actually modify the node representing the current shape but
introduce an accordingly modified copy. This is added as an anony-
mous child, and the execution state is updated such that this new
node becomes the current shape (Fig. 1e). Note that internally, it
is safe to (and our implementation hence will) directly modify the
shape if the old current shape can no longer be accessed and hence
be deleted afterward. In the case that the operation is labeled, also
a copy of the resulting new current shape is added as an invisible,
accordingly labeled child (Fig. 1f).

Subdivision operations For subdivision operations, the current
shape is copied and added as an invisible, proper child. Subse-
quently, a node is created for each resulting part and added as a
visible, proper child to the operation’s node (causing this node to
become visible). Each part also introduces a new derivation branch
for executing the associated actions: a copy of the part’s node is
added as an anonymous child and becomes the current shape in this
branch (Fig. 1 g).

Scoped execution Putting a sequence of actions in brackets (i.e.,
[actions 1) causes them to leave the state outside the brackets un-
touched. As these actions can hence be executed independently

(a) Initial setup (b) Key
O — proper child -
| hild visible
T anonymous chi vistol
; u bl
o further childen invisible

(c) Shape instantiation (d) NIL operation

.

(e

~

Shape operation

(g) Subdivision operation

(f) Labeled shape operation

.

(h) Scoped execution

@ o

(j) Tree constructor

p-A

Figure 1: Effects of actions on the shape tree (new elements are
shown in red).

from the actions following the closing bracket, we create a new
derivation branch for these actions. To this end, a copy of the cur-
rent shape is added as an (initially) invisible, proper child, and a
copy of this child is added as anonymous child to it, representing
the initial current shape of the new branch (Fig. 1 h).

Event groups The operation group introduces a group node by
appending a new invisible, proper child, attributed with the group
name, to the current shape’s parent. Moreover, a copy of the cur-
rent shape is added to this group node, making it the new current
shape (Fig. 11). This causes the results of all succeeding actions to
become descendants of the group node.

Tree construction When spawning a new derivation process
with the construct < actions >(base), a copy of the base shape is
added as an anonymous child to this shape. It forms the root of
the new shape tree and is further set up for executing the actions by
adding an anonymous child representing the current shape (Fig. 1j).
Note that the new tree is actually part of the global shape tree, but
with its root being an anonymous child, it is not known to and ac-

cessible from the base node; on the other hand, the root has full
access to its base node with its ancestors.

Resumable shapes A resumable shape, created with the action
?name(argy, ...), is simply a copy of the current shape that is
added as a visible, proper child and has both name and the argu-
ments as special attributes.

3 CGA++ reference

In the following, we provide a concise reference for CGA++, pri-
marily focusing on elements (including specific functions and oper-
ations) newly introduced or enhanced with respect to CGA shape.
For more details on already existing built-in functions and opera-
tions, please refer to the latest CGA shape reference [Esri 2015].

Grammar Generally, a grammar consists of a sequence of (defi-
nitions of) rules, functions, events, and constants, potentially aug-
mented with comments.

Expressions Our language supports Booleans, numbers, strings,
lists, tuples, shapes, functions, and rules as values. Conceptually,
expressions are free of side effects, and values are immutable. In
particular, any entity involved in an expression will not be modified
by evaluating this expression; however, an accordingly modified
copy of it may be included in the result. (Internally, an implemen-
tation may of course directly modify the entity if it only occurs in
the expression, thus avoiding making a copy and deleting the origi-
nal (never-used-again) entity. Our prototype system tries to perform
such in-place modifications whenever possible.)

Conventions In this reference, an ellipsis succeeding an item
(e.g., an argument) indicates that a variable number of such items
may be specified (at least one if the first item has an index of 1).
Underlined arguments identify expression arguments. Generally,
some arguments may be optional and default to specific values, but
details are usually omitted in the interest of succinctness.

3.1 Functions

A named function is defined by
func name(paramg, ...) = body

where name must be unique, and body is an expression that can
reference the parameters and also the function itself, allowing re-
cursion. To refer to a function as an object, simply its name is used.
This also applies to the built-in functions provided by our system.
An anonymous function (instance) is obtained with

[paramy, ...] (body)

where any variable from outside the function used in the expression
body is captured, forming a closure.

3.2 Rules

A named rule is introduced by
name (paramg, ...) —-=> body

where name uniquely identifies the rule, and body is a sequence of
actions that forms the rule’s body. To reference such a rule as an
object, the rule’s name is prefixed with %. If the rule has parame-
ters, alternatively a reference that comes with an associated argu-
ment list can be obtained via %name (argy, ...); the returned rule
value captures the argument values and is parameterless. Moreover,
anonymous rules are possible: the construct

%(paramy, ...)< body >

yields a new rule value, where the values of all variables from out-
side the rule that are referenced by the actions in body are captured.

Operations for rules

invoke (rule, argy, ...)
Invokes the rule with the provided arguments.

apply(rule, argy, ...)
Executes the rule in-place, i.e., the rule’s actions are executed
directly as part of the currently executed rule body.

3.2.1 Actions

A rule body comprises a sequence of actions, describing how a
shape is refined. An action is either a symbol or an operation and
may be preceded by a label (label = action) to identity its result.

Elementary actions

symbol(argy, ...)
Instantiates the current shape and invokes the rule identified
by symbol with the specified arguments.

terminal (name)
Instantiates the current shape as a leaf shape. An alterna-
tive, concise syntax (for simple names) is simply the name
followed by a period (e.g., A.).

?name (argg, ...)
Instantiates the current shape as a resumable shape with the
provided arguments.

NIL
Adds an empty shape as leaf shape.

stop
Aborts the execution of the current rule body, causing all re-
maining actions to be ignored.

kill
Same as stop, but additionally removes all shapes resulting
from the current rule body from the final result (by adding an
empty shape as successor to each according leaf node).

nop
Dummy operation with no effect.

[actions]
Executes the actions in a new derivation branch. Therefore,
they have no effect on the state outside the brackets.

If the end of a rule body is reached and the last action executed
is an operation that only modified the current shape, an according
terminal shape is automatically instantiated.

Basic shape-modifying operations

t(Ax, Ay, A7)
Translates the current shape’s scope. If an argument is pre-
fixed by ?, it is interpreted as being relative to the scope’s size
and not absolute.

r(a,B,y)

Rotates the current shape’s scope.

(identical to CGA shape)

s(x,y,2)
Resizes the current shape’s scope.

i(name)
Loads the specified asset as new geometry of the current
shape.

axis part absolutesize desired size (relative weight) Elementary functions for creation and modification

e —— . ==
SPIILC™X") {(~1:A | {0.3:8 | ~2:C)* [0.3:8 [~1:A) < actions > (base)

size action(s) repeat Constructs a new tree by refining base in a new derivation
. .) process according to the actions and returning the resulting
' | shape tree.
Al c B c]
08503 17 03 17 03085 tree(nodes)

Returns a new tree with copies of the provided nodes (includ-
ing all their proper descendants) as proper children.

"H < B < W < B < B+
0.3 0.3 0.3

095 03 19 1.9 19 19 03095 insert (tree, node, index, child)
Figure 2: Example for the split subdivision operation, showing Returns a copy of rree where a copy of child has been inserted
results for two different input sizes (6 and 11). as index-th child of node (a node within tree).
remove (tree, node)
extrude (height) Returns a copy of tree where the subtree rooted in node has
Extrudes all faces of the current shape by the given amount. been removed.
Subdivision operations (enhanced with respect to CGA shape) replace (free, node, replacement)
Returns a copy of tree with the subtree identified by node be-
split(axis) pattern ing replaced with a copy of replacement.
Splits the current shape along one axis of its scope, where
the split pattern is given as a list of size:actions pairs, and Basic accessor and query functions
executes the specified actions for each resulting part. Syntac-
tically, the list is delimited by braces and uses | as separa- isNull (node)
tor. Such lists can also be nested and may be repeated, which Checks whether node is the null node.

is indicated by a * suffix. Fig. 2 shows a concrete example.

This operation provides a unified superset of the functional- parent (node)

ity offered by the original CGA shape’s [Miiller et al. 2006] Returns the parent of node or null if none exists.
Subdiv and Repeat operations. children(node)
comp (component) { selector; : actions; | ... } Returns a list of all visible, proper children of node.

Decomposes the current shape into its components (e.g., faces
if component is "£"), and subsequently executes those ac-
tions for a particular component whose according selector;

leaves (tree)
Returns a list all leaf shapes.

matches. If an = separator is used instead of :, the match- nodes (tree, traversal)

ing components are not refined individually but merged and Returns a list of all visible (proper) nodes in free, where
processed as one single shape. In CGA++, selector; can be an traversal allows both for pre-order depth-first ("dfs") and
arbitrary predicate expression, where the shape corresponding breath-first ordering ("bfs").

to the tested component is accessible via $shape. .
f£indA11 (tree, predicate, traversal)

setback(distance) { selector; : actions; | ... } Returns a list of all visible (proper) nodes in tree that satisfy a
Sets back (offsets inward) those edges of the current shape by certain predicate.
distance for which any specified selector; (an arbitrary pred-
icate expression) matches. The edge and the face it belongs getNode (node, attribute, predicate) .
to are exposed as temporary shapes via $edge and $face; Starting from a given node, wal_ks up thc? tree to determm.e the
their respective indices are available via $edgeIndex and closest node that has the specified attribute. If the optional
$faceIndex. Predefined selectors include functions such as predicate is provided, the function further checks whether
all(shape), where shape defaults to $edge, as well as the the attrlibute’s value satisfies the predicate and continues the
variable remainder to identify the shape remaining after all search if not.
selected edges have been set back. For each edge, the actions
of the first matching selector; are executed on the according Elementary operations

edge offset polygon; the remaining shape is processed anal-
ogously. If an = separator is used instead of :, the matching
components are merged and processed as one single shape.

include (tree)
Embeds the given tree as a sibling of the current shape. Con-
cretely, a copy of tree is added as proper child.

3.3 Shapes include (trees)
Embeds the given trees as siblings of the current shape.
Shapes are first-class citizens in CGA++, and the notion of a shape

also encompasses the node representing the shape in the shape tree adopt (shape)

and the subtree rooted in that node. Note that functions modify- Modifies the current shape such that it matches the specified
ing an input (sub)tree actually return an accordingly modified new one. To this end, an accordingly modified copy is added as
(sub)tree (whose root is an anonymous child, typically of the first anonymous child and made the new current shape.

input (sub)tree’s parent). T iting functi
ree rewriting functions

Literals i
prune (tree, predicate)

null Returns a copy of tree where all subtrees rooted in nodes for
Null node literal, indicating the absence of a node. which the predicate evaluates to true have been removed.

refine(tree, rule)
Returns a copy of tree where all leaf nodes have been refined
by invoking the specified rule for them. Note that rule is an
expression argument and hence evaluated for each leaf node.
If an empty rule is provided for a node, no refinement happens
for it. All refinements are executed in separate branches of a
common new derivation process.

continue (tree, namey = ruley, ...)
Invokes the rule rule; for all resumable shapes whose name
matches name;, using the arguments associated with the re-
spective resumable shape, and returns an accordingly refined
tree.

Shape-modifying and subdivision functions

t (tree, Ax, Ay, Az)
Returns a copy of tree with the scopes of all shape nodes trans-
lated by the given offset.

s(tree, x,y, 2)
Returns a copy of tree where the root shape’s scope has been
resized to the provided dimensions, and the scopes of all
proper descendants have been adjusted accordingly.

transformScope (source, target)
Returns a copy of source where the scopes of all shape nodes
are subjected to the transformation that makes the root shape’s
scope identical to the scope of target, thus essentially fitting
the source into the target.

split (shape, axis) pattern
Splits the shape along one axis of its scope, where the split
pattern is given as a list of sizes (as in the case of the split
operation but without actions), and returns a list of the result-
ing part shapes.

comp (shape , component) { selector; | ... }
Decomposes the current shape into its components analo-
gously to the comp operation and returns a list whose i-th el-
ement is a list of those parts selected by selector;. If selector;
has an = suffix, the matching components are merged, forming
a single part.

Spatial query functions

inside(shape,; , shape;)
Determines whether shape; is inside shape;.

overlaps (shape; , shape;)
Determines whether shape; overlaps shape;.

touches (shape; , shapey)
Determines whether shape; touches shape;.

Multi-shape operations

union(shape), union(shapes)
Updates the current shape with the union of this shape and the
provided shape(s).

intersect (shape), intersect (shapes)
Intersects the current shape with the provided shape(s).

minus (shape), minus (shapes)
Subtracts the provided shape(s) from the current shape.

connectTo (shape)
Constructs a connection from the current shape to the speci-
fied shape, where each edge of the current shape is joined with
a corresponding edge of shape via a quadrilateral. The current

and the provided shape must each consist of a single face with
the same number of vertices.

Attributes Each shape can have a number of attributes. An at-
tribute is identified by a name, and its value can be of any type
supported by the language.

set (name, value)
Operation that sets an attribute of the current shape.

get (shape , name , default)

Function for retrieving the value of a shape’s attribute. If the
attribute does not exist, default is returned (or an error oc-
curs if default is omitted). If a shape itself does not have an
attribute, get recursively consults the attribute set of its par-
ent. That is, a shape basically inherits the attributes from its
ancestors. Therefore, a shape generally does not maintain a
copy of its parent’s attributes, which also facilitates locating
shape nodes by attributes.

has (shape , name , checkAncestors)
Function for checking whether a shape has a certain attribute.
The parameter checkAncestors specifies whether attributes in-
herited from the shape’s ancestors are considered or not.

The attribute system is also used by several operations, which au-
tomatically set some predefined attributes, and further provides an
interface to data intrinsic to the shape. Examples of related built-in
attributes include (these are identically named in CGA shape):

scope.tx, scope.ty, scope.tz
Position of the scope (X, y, and z coordinates).

scope.rx, scope.ry, scope.rz
Orientation of the scope (rotation about x, y, and z axes in
degrees).

scope.sX, Scope.sSy, Scope.sz
Size of the scope (in X, y, and z dimensions).

split.index
Index of a part resulting from a split operation.

split.total
Total number of parts produced by a split operation.

material.color.rgb
Diffuse color of the shape’s material.

Geometric query functions

area (shape)
Returns the surface area of shape, where area(this) is
equivalent to CGA shape’s geometry.area() function.

volume (shape)
Returns the volume of shape, where volume (this) is equiv-
alent to CGA shape’s geometry.volume () function.

3.4 Events

An event is defined and completely specified with the construct
event name(paramy, ...) { priority} = handler

where name must be unique, priority is an expression that evalu-
ates to a number (and defaults to O if omitted), and handler is an
expression that evaluates to a list of rules. If parameters param;
are provided, a whole family of events is defined; both priority and
handler may refer to the parameters. When handling an event, han-
dler will be evaluated to determine the further refinement of the
current shapes of all participating derivation branches. The list of
these shapes is exposed as variable $nodes within handler.

Operations

event (name, group)
Raises an event and suspends the current branch. Once the
event instance got handled, the branch is resumed, initially
executing the actions of the rule determined by the event’s
handler. If group is specified, the event is restricted to the sub-
tree identified by the first group node with a matching name
that is found when traversing the tree upward.

group (name)
Opens a new group with the given name by creating an ac-
cording group node. All actions succeeding this operation be-
long to this group.

wait (event)
Suspends the execution until the specified (global) event gets
handled (for the first time).

wait (root, event, group)
Suspends the execution until the specified event gets handled
in the subtree identified by root (for the first time).

Event handler functions Several functions are provided to facil-
itate writing an event handler expression and to provide a concise
syntax for common cases.

pass (shapes)
Loops over all shapes and returns %<> (i.e., a rule with no
actions) for each in a list, which has the same size as shapes.

foreach (shapes) { actions }
Returns a list of rules compiled by looping over all shapes and
evaluating %< actions > for each.

forall (shapes, operation, toKeep) { actions }
Returns a list of rules, featuring %< operation(shapes) ac-
tions > for the toKeep-th shape and %< kill > for all oth-
ers. For example, forall offers a concise way to perform a
Boolean operation (e.g., operation = "union") involving all
shapes and only continue at one shape with the result, aban-
doning all others.

select (shapes) { selector; : actions;
| selector; = handler; | ... }
Loops over all shapes and checks for each which selector; (an
arbitrary predicate expression) matches; it eventually returns
a list of rules in the correct order. If no selector matches, %<>
is returned for this shape. Otherwise, if the matching selector
is followed by :, %< actions; > is returned. Conversely, in the
case of an = separator, handler; is evaluated for the list of all
shapes matching the selector (accessible via $groupNodes).
This conveniently allows for nesting event handler functions.

partitionByPred (shapes, predicate , groupHandler)

First, partitions the provided list of shapes analogously to
groupByPred (cf. Sec. 3.7), putting two elements into the
same group if predicate evaluates to true for them (accessible
via $a and $b). For each resulting group of shapes, the ex-
pression groupHandler, which can access the group’s shapes
via $groupNodes and should yield a list of according rules, is
then evaluated. Finally, the obtained lists of rules are merged
such that the partitioning gets reversed, i.e., the i-th rule cor-
responds to the result for the i-th shape.

partitionByNumber (shapes, partition, groupHandler)
Identical to partitionByPred, but partitions shapes analo-
gously to groupByNumber (cf. Sec. 3.7), putting all elements
for which partition evaluates to identical values into the same

group.

3.5 Constants

Global constants can be defined with
const name = value

where name must be unique and value is an expression that can be
evaluated at the beginning of the derivation process.

3.6 Control constructs

Selective evaluation or execution The following constructs can
occur anywhere in a rule body and thus generalize the concept of
conditional and stochastic rules.

e Conditional evaluation (within an expression) or execution
(within a sequence of actions):

case { condition;: result; | | else: default }

The conditions condition; are sequentially evaluated until one
yields true. In that case, result; constitutes the result (an expres-
sion or a sequence of actions, respectively), otherwise default.

e Stochastic evaluation or execution:

prob { probability;: result; | | else: default }

The result is determined randomly based on the provided prob-
abilities (else = 1 — }; probability;).

Auxiliary variables Values can be assigned to variables and sub-
sequently be used in an expression or within the arguments of ac-
tions via the following construct:

with(var; = value;, ..., expression)
with(var; = value;, ...) { actions }

3.7 Lists

Lists are ordered sequences of values of identical type. Many func-
tions exist for working with lists; note that if these involve a mod-
ification of a provided list, conceptually, an accordingly modified
new copy of it is created.

Elementary functions for creation and modification

list (valuey, ...)
Creates a new list with the given elements.

append (list, value)
Appends value to list.

insert (list, index, value)
Inserts value into list at position index.

concat (list;, listy)
Concatenates two lists.

remove (list, index)
Removes the index-th element from the list.

removeFirst (list, value)
Removes the first occurrence of value from the list.

removeAll (list, value)
Removes all occurrences of value from the list.

sublist (list, first, size)
Returns the sublist of size consecutive elements starting at po-
sition first as a new list. If size is omitted, the sublist extends
to the end of lisz.

Basic accessor and query functions

size (list)
Returns the number of elements in a list.

first (list), last(list)
Return the first and last element, respectively, of list.

get (list, index) or list[index]
Returns the index-th element of list.

index (list, value)
Determines the index of the first occurrence of a value. If no
such element exists, —1 is returned.

find (list, predicate)
Determines the index of the first element for which predicate
evaluates to true. If no such element exists, —1 is returned.

Transformation functions

reverse (list)
Returns a reversed copy of list.

shuffle (list)
Returns a randomly permuted copy of /isz.

makeSet (/ist)
Returns a duplicate-free copy of list.

filter (list, predicate)
Returns a copy of /list where all elements for which predicate
evaluates to false have been removed.

map (list, expr)
Evaluates the expression argument expr for each element of
list and returns a list of the resulting values. Within expr, the
respective element’s value is accessible via $value and its
index via $index.

map (list; , list, , expr)
Evaluates the expression argument expr for each element of
list; and the according element in list,, and returns a list of
the resulting values.

sort (list, before)
Returns a sorted copy of list where the expression argument
before indicates whether one element ($a) goes before another
one ($b) or not; e.g., $a < $b results in numbers being or-
dered ascendingly.

scan (init, list, combine, inclusive)
Performs a scan of a list, sequentially combining the elements
via combine, starting with init, and putting the results for each
step in a new list. For example, scan(1, 1list(2, 3, 5),
$a * $b, true) yields a list with elements 2, 6, 30.

Reduction functions

countIf (list, predicate)
Returns the number of elements in list for which predicate
evaluates to true.

any (list, predicate)
Returns whether any element exists in /ist for which predicate
evaluates to true.

sum(/ist), min(list), max(list)
Return the sum, the minimum value, and the maximum value,
respectively, of a list of numbers.

flatten(list)
Merges a list of lists into a single list.

reduce (list, combine)
Performs a list reduction, where combine specifies how two
elements ($a and $b) can be combined to a new element. For
example, sum(x) =reduce(x, $a + $b) and flatten(x)
= reduce(x, concat).

Grouping functions

groupByPred (list, predicate)
Groups the elements of /ist such that if predicate evaluates to
true for a pair of them (accessible via $a and $b), these two
elements are put into the same group, and returns a list of the
groups (each represented as a list of the group elements).

groupByNumber (list, partition)
Groups the elements of list such that all elements for which
partition evaluates to identical values are put into the same
group, and returns a list of the resulting groups.

3.8 Tuples

Tuples are fixed-size sequences of values of possibly different
types. Built-in functions for using tuples include:

tuple (valuey, ...)
Creates a new tuple with the given components.

size (tuple)
Returns the number of components in a tuple.

get (tuple, index) or tuple[index]

Returns the index-th component of fuple.

3.9 Built-in support functions

Many common support functions exist. In the following, only func-
tions used in the examples are listed.

Mathematical functions

min(x, y), max(x,y)
Return the minimum value and the maximum value, respec-
tively, of two numbers.

floor(x), ceil(x)
Return the value of a number rounded downward and upward,
respectively, to the nearest integral value.

rint (x)
Returns the rounded integral value of a number.

Random numbers

p (probability)
Returns true with the given probability and false otherwise.

rand (min, max)
Returns a uniformly distributed pseudo-random number from
the range [min, max].

4 Examples

For selected examples, we provide some of the grammar definitions
that are omitted in the paper in the interest of space.

4.1 Event handling function subtractLargerOnes

The handler subtractLargerOnes employed in snippet S1 of the
paper yields rules that subtract from each shape all shapes with a
larger area:

1 func subtractLargerOnes(shapes) =

2 with(byArea = sort(shapes, area($a) > area($b)),

3 isLargest = [s](index(byArea, s) == 0),

4 largerOnes = [s](sublist(byArea, 0, index(byArea, s))),
5 select(s : shapes) {

6 lisLargest(s): minus(largerOnes(s))

7)

First, the shapes are sorted by area (line 2). Using this sorted list,
the function isLargest checks whether a shape is the largest one,
and the function largerOnes returns for a shape the list of shapes
that are larger (i.e., precede it in the area-sorted list). Utilizing these
auxiliary functions, the list of rules for the further refinement of the
input shapes is determined and returned (lines 5-7). The largest
shape will be left unchanged, while each other shape will subtract
all shapes that are larger than itself.

4.2 Facades

In the example presented in Sec. 6.3 of the paper, the following
constants are used in addition to upperFloorElems:

1 const minWallW = 0.5
2 const maxWallW = 3.0
3 const minDoorW = 1.0
4 const maxDoorW = 1.4
5
6
7

const firstFloorElems = list(
tuple (%WindowCell (% SingleWindow), 0.6, 1.0),

tuple (%WindowCell (4WideWindow), 1.5, 3.0))

The facade elements (and wall pieces) are generated with a set of
simple rules:

8 WindowCell(w) -->

9 split("y") { ~2: Wall | 1.1: invoke(w) | ~1: Wall }
10 DoorCell --> split("y") { 2.0: Door | ~1: Wall }

11 SingleWindow --> ...

12 DoubleWindow --> ...

13 WideWindow --> ...

14 Door --> ...

15 Wall --> ...

Note that WindowCell takes another rule as parameter. The omit-
ted actions in lines 11-15 are mainly responsible for setting the
material color and loading geometry from asset files (via the i op-
eration).

To make some expressions more succinct, the following auxiliary
functions are introduced:

16 func randomElem(l) =
17 with(n = size(1l), get(1l, min(floor(rand(0, n)), n - 1)))
18 func sublist2(1l, first) =

19 case { first >= size(l): list()

20 | else: sublist (1, first) }

21 func sublist3(l, first, last) = case {

22 first >= 0 && first < last: sublist(l, first, last-first)

23 | first >= 0 &% last < 0: sublist(l, first)
2 | else: list() }

The function getCells recursively traverses a subtree to find all
shape nodes that have been marked with the attribute "floorCell"
(it does not consider descendants of such nodes):

25 func getCells(node) =

26 case { has(node, "floorCell", false):

27 list(node)

28 | else:

29 flatten(map(c : children(node), getCells(c))) }

These shapes, referred to as “cells”, are then investigated by calling
legalDoorPlacements to compile a list of placements of a door
satisfying the constraints imposed by the design’s objectives:

30 func legalDoorPlacements(f, cells) = with(

31 c_x0 = map(c : cells, get(c, "scope.tx")),

32 c_w = map(c : cells, get(c, "scope.sx")),

33 f_x0 = get(f, "scope.tx"),

34 f_x1 = £_x0 + get(f, "scope.sx"),

35 flatten(map(cells, testCellForDoor(cells, c_x0, c_w,

36 f_x0, f_x1, $index))))
After determining the left x coordinates and the widths of all cells,
each cell is investigated by the following function:

37 func testCellForDoor(cells, c_x0, c_w, f_x0, f_x1, i) =
38 with(

39 x1_prev =case { i > 0: c_x0[i-1] + c_w[i-1]

40 | else: f£_x0 },

41 x0 = c_x0[i],

o) x1 = x0 + c_w[il,

43 x0_next = case { i + 1 == size(cells): f_x1

44 | else: c_x0[i+1] },
45 walllL_w = x0 - x1_prev,

46 cellW = x1 - x0,

47 wallR_w = x0_next - x1,

48 wallSpace = max(0, min(walllL_w, wallR_w) - minWallW),
49 candidatesWalll = case {

50 i > 0 && wallL_w >= minDoorW + 2 * minWallW:

51 list(tuple((x1_prev + x0) / 2,

52 min(maxDoorW, walllL_w - 2 * minWallW)))
53 | else:

54 list() },

55 candidatesCell = case {

56 cellW + 2 * wallSpace >= minDoorW:

57 list(tuple((x0 + x1) / 2,

58 min(maxDoorW, cellW + 2 * wallSpace)))
59 | else:

60 list() },

61 concat (candidatesWalll., candidatesCell))

At first, the x coordinates of the preceding cell’s right side (or the fa-
cade’s right boundary in case of the first cell), the considered cell’s
left and right side, and the succeeding cell’s (or facade’s) left side
(or boundary) are determined and used to compute the widths of the
wall piece on the cell’s left, of the cell, and of the wall piece on the
cell’s right. Subsequently, it is checked whether centering the door
with respect to the left wall piece would leave enough wall space
on both sides of that piece (line 50), and if so, an according place-
ment candidate is determined (lines 51-52). Center-aligning the
door with the cell itself is considered next (lines 55-60); note that
the door may be wider than the cell as long as sufficient wall space
remains on both sides. Finally, a list of the identified candidates for
door placement is returned.

The list of the cells of an upper floor is also used when filling the
facade parts on the left and the right side of the placed door with
elements from firstFloorElems:

6 FillFirstFloor(cells) --> with(

63 x0 = [s](get(s, "scope.tx")),

64 x1 = [s](get(s, "scope.tx") + get(s, "scope.sx")),

65 firstCell = find(c : cells, x0(c) > x0(this)),

66 lastCell = find(c : cells, x1(c) >= x1(this)),

67 relevantCells = sublist3(cells, firstCell, lastCell),
68 snapPositions = flatten(map(c : relevantCells,

69 list(x0(c), x1(c)))))

70 { FillFirstFloor2(snapPositions) }

First, the subset of the cells that cover the currently considered fa-
cade part is determined (lines 65—67), using the functions x0 and
x1 (lines 63-64) for a compact formulation. From the left and right
sides of those cells, a list of snap positions is compiled (lines 68—
69); these represent all positions that result in a vertical alighment
across floors meeting the design’s constraints. The further process-
ing is then delegated to the following rule:

71 FillFirstFloor2(snapPositions) -->

72 case { size(snapPositions) > 1:

73 FillFirstFloor3(snapPositions)
74 | else:

75 Wall }

If less than two snap positions remain, a wall piece is cre-
ated; otherwise, the following rule is used (it is not merged into
FillFirstFloor2 merely to more effectively use the limited col-
umn width in this document):

76 FillFirstFloor3(snapPs) --> with(
77 widths = map(p : sublist(snapPs, 1), p - snapPs[0]),

78 elems = filter(e : firstFloorElems,

79 find(s : widths, e[1]l<=s && s<=e[2]) >= 0))
80 { case {

81 size(elems) > O:

82 with(e = randomElem(elems),

83 w = randomElem(filter(s : widths,

84 el1] <= s & s <= e[2])),
85 skip = index(widths, w) + 2,

86 wallW = snapPs[0] - get("scope.tx"))

87 { split("x") {

88 wallW: Wall

89 | w: invoke(e[0])

90 | ~1: FillFirstFloor2(sublist2(snapPs, skip)) } }
91 | else:

92 FillFirstFloor2(sublist(snapPs, 1)) } }

Considering a placement with the left side at the first snap posi-
tion, a list of allowed element widths is determined from the other
snap positions (line 77), and the elements from firstFloorElems
with a compatible permissible width range are selected. If no such
element exists, the next snap position is considered for placement
(line 92). Otherwise, a permissible element and an allowed width

are randomly chosen. Similar to FillUpperFloor, a wall piece
and this element are split off (lines 87-90), and the remaining fa-
cade part is filled recursively (beginning at the next snap position to
the right of the placed element).

References

Esri, 2014. Esri CityEngine 2014.1.

Esri, 2015. CGA shape grammar reference.
http://cehelp.esri.com/help/topic/com.procedural.cityengine.help/html/
cgareference/cgaindex.html.

Havemann, S. 2005. Generative Mesh Modeling. PhD thesis, TU
Braunschweig.

Honmann, B., Havemann, S., KrisperL, U., aNp FELLNER, D. 2010.
A GML shape grammar for semantically enriched 3D building
models. Computers & Graphics 34, 4, 322-334.

KreckrAu, L., anp KoBBerr, L. 2011. Procedural modeling of inter-
connected structures. Computer Graphics Forum 30,2, 335-344.

Lesranc, L., Houtg, J., anp PouriN, P. 2011. Component-based
modeling of complete buildings. In Proceedings of Graphics
Interface 2011, 87-94.

MULLER, P., Wonka, P., HAEGLER, S., ULMER, A., AND GooL, L. V.
2006. Procedural modeling of buildings. ACM Transactions on
Graphics 25, 3, 614-623.

ScuwaArz, M., AND WoNKA, P. 2014. Procedural design of exterior
lighting for buildings with complex constraints. ACM Transac-
tions on Graphics 33, 5, 166:1-166:16.

STEINBERGER, M., KENzEL, M., KaINz, B., MULLER, J., WoNKA, P.,
AND SCHMALSTIEG, D. 2014. Parallel generation of architecture on
the GPU. Computer Graphics Forum 33, 2, 73-82.

	Further discussion
	Guidance of derivation order
	Ad-hoc solutions for specific tasks
	Technical necessity of new language features
	Approaches using non-grammar languages

	Implementation details for shape trees
	CGA++ reference
	Functions
	Rules
	Actions

	Shapes
	Events
	Constants
	Control constructs
	Lists
	Tuples
	Built-in support functions

	Examples
	Event handling function |subtractLargerOnes|
	Façades

