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Figure 1: Our novel grammar language CGA++ enables many advanced procedural modeling scenarios not possible with previous solutions
(top; bottom: ours), as exemplified with a grammar for residential suburban buildings comprising a main house, a wing, and a garage, and
allowing different configurations of these. (a) With CGA++, modeling decisions can be coordinated across multiple shapes, e.g., to guarantee
that overall exactly one door is created. (b) CGA++ enables operations involving multiple shapes, such as Boolean operations. Hence, masses
can be merged to avoid overlapping geometries, allowing, e.g., one roof covering the whole building. (c) Generic contextual information can
be obtained and acted on in CGA++, whereas previous solutions at best support a narrow set of context sensitivity. While they only allow
canceling windows partially occluded, CGA++ additionally enables consistently adjusting all top floor windows. (d) Traditionally, only one
alternative can be pursued during one specific derivation. CGA++, however, makes it possible to investigate multiple ones and choose the
best of them. On a corner lot, the building grammar may fail if it executes only one option stochastically, and the selected one causes the
garage to end up on an irregular footprint. CGA++ allows all options to be explored, robustly evading such failure cases.

Abstract

We present the novel grammar language CGA++ for the procedu-
ral modeling of architecture. While existing grammar-based ap-
proaches can produce stunning results, they are limited in what
modeling scenarios can be realized. In particular, many context-
sensitive tasks are precluded, not least because within the rules
specifying how one shape is refined, the necessary knowledge
about other shapes is not available. Transcending such limitations,
CGA++ significantly raises the expressiveness and offers a generic
and integrated solution for many advanced procedural modeling
problems. Pivotally, CGA++ grants first-class citizenship to shapes,
enabling, within a grammar, directly accessing shapes and shape
trees, operations on multiple shapes, rewriting shape (sub)trees, and
spawning new trees (e.g., to explore multiple alternatives). The
new linguistic device of events allows coordination across multiple
shapes, featuring powerful dynamic grouping and synchronization.
Various examples illustrate CGA++, demonstrating solutions to pre-
viously infeasible modeling challenges.
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1 Introduction

Procedural modeling techniques are successfully employed in many
domains, including urban planning, computer games, and movie
production, for creating numerous instances of similar but varied
objects with high detail. In the important case of buildings, typ-
ically a grammar-based approach is pursued, where a set of rules
describe how one shape is refined into a set of new ones. Starting
from an initial shape (e.g., a lot), these rules are iteratively applied,
hierarchically evolving the structure of the model and incrementally
adding details.

While impressive results of high visual complexity can be created
with such grammars, several advanced modeling scenarios are not
feasible with current grammar languages and systems such as CGA
shape [Müller et al. 2006]. In particular, they exhibit the following
fundamental limitations (Fig. 1 illustrates):

L1. Coordinating refinement decisions across multiple shapes is
not directly supported and easily becomes impractical. Any
decision that affects multiple shapes has to be made no later
than at the point where these shapes’ lineages diverge (and
thus before these shapes exist at all) and then explicitly be
passed on in rules. Notably, this implies that if this decision is
influenced by properties of these (not-yet-existing) shapes or
any other information only established later in the derivation
process, these have to be inferred manually.

L2. Operations involving multiple shapes are normally not possi-
ble. For example, neither Boolean operations, such as forming
the intersection of two shapes, nor assembling a shape from
multiple shapes can be expressed.

L3. Contextual information is generally not available, preclud-
ing taking information from other shapes into account, as
would be required for modeling objectives such as alignment.
Merely for a few selected problems, ad-hoc solutions exist,
such as limited occlusion queries [Müller et al. 2006].



L4. There is no support for exploring multiple alternatives (e.g., to
choose the best one) or for performing auxiliary constructions
(e.g., to derive parameter values). In particular, spawning a
derivation from within a derivation and querying or embed-
ding the result is not possible.

In this paper, we present a novel grammar language aimed at the
procedural modeling of architecture that addresses and overcomes
all of these limitations. In its design, particular care was taken to
offer an integrated and generic solution instead of an external or
ad-hoc one. Our language, called CGA++, is based on CGA shape
[Müller et al. 2006] and evolves it carefully and in a natural way,
raising its expressiveness and capabilities without deviating from or
even abandoning its successful overall approach.

CGA++ introduces two new main language features. First, shapes
become directly exposed in the grammar as first-class citizens; this
entails a multitude of desirable consequences: Individual shapes
can be uniquely identified as well as passed around and stored as
values. Particularly, operations can take shapes as arguments, en-
abling Boolean operations on multiple shapes (addressing L2). It
further becomes possible to access, traverse, and query the shape
tree induced by the derivation process, which facilitates obtaining
generic contextual information (L3). Importantly, also new tem-
porary shape trees can be created on the fly, e.g., by spawning a
new derivation or by invoking a function on an existing tree. This
means that alternatives can be pursued and auxiliary shapes be uti-
lized right from within a grammar (L4).

Second, a dynamic grouping mechanism and synchronization facil-
ity is provided with the linguistic device of events. It enables coor-
dination across a group of shapes, such as exchanging information
or establishing a consistent decision on how to proceed individu-
ally (L1). Moreover, events can be used to influence the order of the
derivation process; in particular, this allows ensuring the availabil-
ity of all shapes required when performing a contextual query (L3).

With CGA++, we are hence the first to provide a generic and in-
tegrated grammar-based solution for modeling of architecture that
does not suffer from the limitations listed above. Our underly-
ing contributions include introducing full first-class citizenship for
shapes (Sec. 3) and events as a linguistic means for complex multi-
shape coordination (Sec. 4). In addition, we present several further
language elements that primarily aim at facilitating the ease of use
and offering a concise syntax (Sec. 5). As we demonstrate by ex-
amples (Sec. 6), together these new features are extremely powerful
and make a wide range of new applications possible. Among oth-
ers, they enable

• operations using multiple shapes as input, such as Boolean op-
erations, and decompose–refine–recompose workflows,

• creating auxiliary and sub-constructions as well as adopting and
reasoning about their results,

• (generic) coordination across multiple shapes, and

• establishing and querying generic contexts, such as spatial adja-
cency of shapes.

2 Background

Various formal grammar systems have been proposed over time for
procedural content creation. L-systems [Prusinkiewicz and Linden-
mayer 1990] are parallel string rewriting systems, which are used
for plant generation by interpreting the strings as Logo-style turtle
commands. Multiple forms of support for context sensitivity have
been explored for them (cf. Sec. 7.5). Shape grammars [Stiny and
Gips 1972; Stiny 1980; Stiny 2006] are a powerful tool to explore,
analyze, and understand spatial designs. They have been used in
many domains, including architecture. A shape grammar consists

of rules that replace one (sub)shape by another one, where geomet-
ric shape matching is performed. By contrast, set grammars [Stiny
1982] treat shapes as symbols instead of as geometric objects; they
have been used in the form of split grammars for modeling façades
[Wonka et al. 2003]. Drawing from this body of work, Müller
et al. [2006] introduced CGA shape, a language for shape gram-
mars1 for the procedural modeling of architectural buildings. Nu-
merous extensions and variants exist, addressing, for example, vi-
sual editing [Lipp et al. 2008], additional classes of shapes [Kreck-
lau et al. 2010], interconnected structures [Krecklau and Kobbelt
2011], GPU-based execution [Steinberger et al. 2014], and spe-
cific application domains [Whiting et al. 2009; Schwarz and Wonka
2014] (cf. Secs. 7.4 and 7.5 for a detailed treatment). We adopted
the latest incarnation of CGA shape [Esri 2014; Esri 2015] as basis
for CGA++, including its syntax.2

In the following, we provide a brief review of CGA shape. It oper-
ates on shapes, treating them as (symbolic) objects. A shape com-
prises an oriented bounding box called scope and geometry (along
with material information) inside this scope. Rules of the form α
--> β determine how a shape is refined, where α is a symbol and β
is a sequence of actions (symbols and operations), defining the suc-
cessors of α. Classically, a shape is assigned a symbol, and if a rule
whose left-hand side α matches this symbol is applied, the shape
is substituted by the rule’s right-hand side β. Not unlike the turtle
command interpretation of modules in L-systems [Prusinkiewicz
and Lindenmayer 1990], the actions in β are executed sequentially,
where a symbol instantiates the shape in its current state and as-
signs it this symbol, while an operation modifies or subdivides the
shape. Starting with an initial shape, this derivation process contin-
ues until no more rules can be applied; the remaining shapes define
the final model. The hierarchical refinement performed during the
derivation induces a tree of shapes, referred to as shape tree. Note
that we can think of α as the rule’s name and the appearance of such
a name in β as an invocation of the according rule. Further, we refer
to β as the rule’s body.

One set of operations allows modifying the current shape, such as
translating (t), rotating (r), or resizing (s) its scope, extruding the
faces of its geometry (extrude) or building roofs on them (e.g.,
roofGable), and loading an asset as its new geometry (i). Another
set of operations offers different ways of subdividing the shape,
where actions can be specified for the resulting parts. For instance,
the operation split(axis) splits the current shape along one axis
of its scope, where the split pattern is given as a list of size:actions
pairs. Syntactically, such lists are delimited by braces and use | as
separator.

Each parameter provided for operations and rules (a symbol may
have parameters) can be an arbitrary expression, which may involve
functions. In addition to built-in ones, such as sin, it is also pos-
sible to define custom functions as part of the grammar. Both ex-
pressions and rule bodies may further utilize constructs for a con-
ditional or stochastic selection among multiple options. Syntactic
details are offered in the supplemental material, where we provide
a concise reference for CGA++ that covers all language elements
encountered in the examples presented throughout this paper.

3 Shapes as first-class citizens

One main key to overcoming the limitations outlined in Sec. 1 is
making both shapes and the notion of a shape tree explicitly avail-
able within a grammar. With the derivation process defining the
shape tree, each shape occurring during the derivation corresponds

1Despite the name, the rule matching actually uses symbols.
2Generally, any existing CGA shape grammar constitutes a valid CGA++

grammar (barring some minor syntactical nuances).



S --> i("circle") m=B(7) t(3,0,0) s(10,0,10) minus(m) B(11)

B(h) --> extrude(h)

(a) Grammar

m

B(11)B(7)

S

(b) Shape tree (c) Result

Figure 2: Example of a grammar (a), showcasing labels and op-
erations using other shapes (these new language features are high-
lighted in blue). The according derivation process defines a shape
tree (b), whose leaf nodes determine the final result (c).

to a node in this tree and hence further identifies the subtree rooted
in that node. That is, the terms shape, (shape) node, and (sub)tree
essentially offer different views of the same entity. Adopting this
unifying trinity interpretation, we expose these entities directly in
our language. Importantly, the support is not limited to passive use
in expressions but also allows new values to be created.

3.1 Using existing shapes

CGA++ provides multiple options for referencing an existing shape.
In addition to querying the shape tree, shapes within a rule body can
be conveniently accessed by name. Once a shape has been identi-
fied, it can participate freely in expressions; in particular, it may be
used as argument to functions and operations. As a simple instruc-
tive example, the grammar in Fig. 2 demonstrates how the Boolean
operation minus, which modifies the current shape by subtracting a
given shape from it, can be employed to avoid overlapping building
footprints.

By preceding an action in a rule body with a label (label = action),
such as m in the example, the result of this action is assigned this
label and can be accessed directly by using the label (it basically be-
comes a local variable name). Note that it is hence also possible to
refer to an intermediate result that would generally not be included
in the shape tree, such as the outcome of shape-modifying opera-
tions like t or i. If labeled, such a result gets actually integrated
into the shape tree to allow a meaningful interpretation as node and
subtree; however, care must be taken that it is excluded from the
final procedurally generated model. Details on how this can be re-
alized are provided in the supplemental material. Furthermore, the
keyword this offers direct access to the current shape.

With shapes being usable as values, operations become possible
that accept further shapes as arguments, enabling Boolean opera-
tions, such as minus, among others. Analogously, functions can
be provided that query properties of one or more shapes, such as
examining the spatial relationship of two shapes. For instance,
overlaps(shape1, shape2) determines whether two shapes over-
lap.

Querying the shape tree CGA++ offers functions for arbitrarily
navigating the shape tree (cf. Fig. 3). Given a node, both its parent
and a list of its children can be queried. Related convenience func-
tions exist that return all leaf nodes for the according subtree or a
list of all nodes enumerated according to a specified traversal order.
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Figure 3: Example illustrating some of the offered tree navigation
options. a and b are values representing the shape nodes 1 and 2,
respectively, whereas X and Y are labels.

The absence of a node (e.g., the parent of the shape tree’s root) is
expressed with the null node literal, denoted by null in grammars.
To reference a labeled child, the (left-associative) access operator
:: can be used, which takes a node on its left side and a label on its
right side.

When consulting the shape tree, it is often easiest to locate shapes
based on some criterion, not least because this allows abstracting
from the exact structure of the tree. One powerful device in this
regard are attributes. In CGA++, each shape can have an arbitrary
number of attributes, which can be both set and retrieved. An at-
tribute is identified by a name, and its value can be of any type
supported by the language, including a shape. The attribute system
is also used by several operations, which automatically set some
predefined attributes. Both the presence of an attribute and its value
can be utilized to identify shapes, and according convenience func-
tions are provided.

3.2 Creating new shapes

The real power of introducing shapes as first-class citizens into
grammars unfolds only when going beyond referencing and query-
ing existing shapes, and allowing creating new shapes.

Constructing new shape trees Spawning a new derivation pro-
cess from within the current one, the construct < actions >(base)
creates a new (sub) shape tree. Employing the shape identified by
base as initial shape, the specified actions are executed and the re-
sulting tree is returned. If the base argument is omitted, the current
shape is used.

Such a new shape tree can be used in expressions just like any other
shape, enabling executing numerous advanced modeling tasks. Po-
tential applications include deriving a (temporary) variant of a
shape (e.g., enlarging it) for use with a spatial query function such
as overlaps. As another example, multiple such shape trees can
be created to cover a range of alternatives (e.g., different façade
decompositions) and determine which one to choose.

Crucially, it is possible to incorporate a given shape tree into
the current derivation. The operation include(tree) embeds the
given tree as a sibling of the current shape, whereas the operation
adopt(shape) modifies the current shape such that it matches the
specified one.

Functions A new shape tree is also produced by several built-in
functions, deriving it from one or more input (sub)trees. One set
of these functions is primarily concerned with modifying shapes.
For instance, transformScope(source, target) returns a copy of
source where the scopes of all nodes are subjected to the transfor-
mation that makes the root node’s scope identical to the scope of
target, thus essentially fitting the source into the target. For many
operations, according functions are provided that take the shape to
work on as argument and return the result as a new shape; when-
ever reasonable, they further extend an operation’s effect to a whole



tree. As an example, t(tree,∆x,∆y,∆z) translates the scopes of
all nodes of the specified tree by the given offset. Corresponding
functions also exist for subdivision operations, each returning a list
featuring all resulting parts.

Another set of functions focuses on manipulating the structure of
trees. In addition to elementary functions for creating a new tree
with given children and for adding, removing, or replacing sub-
trees of a given tree, high-level tree rewriting functions are offered.
These allow pruning subtrees as well as refining leaf nodes by in-
voking a provided rule for them.

Resumable shapes Refining a tree later on is further facilitated
by resumable shapes. These serve as indicator nodes for where
the derivation should be continued in later stages. Such a node is
created with the rule-body action ?name(arg0,. . . ), recording the
current shape and the provided arguments; it is basically an ordi-
nary shape node with special attributes. The corresponding function
continue(tree, name0=rule0,. . . ) invokes the rule rulei for all re-
sumable shapes in the given tree whose name matches namei, using
the arguments associated with the respective resumable shape, and
returns an accordingly refined tree.

Fig. 4 shows an example where two partial shape trees are con-
structed and the one crystallizing as the better option is then com-
pleted by refining the resumable shapes of the according tree. The
Parcel rule explores two alternative development schemes by first
partially constructing the two corresponding shape trees; they are
assigned to variables a and b for subsequent use. The involved rules
DesignA and DesignB ultimately generate Footprint shapes and
extrude them, yielding building masses; their further refinement is
deferred by emitting a resumable shape ?Mass for each. Employ-
ing the function V, which sums the volumes of the leaf shapes of a
given tree, the Parcel rule then determines the tree with the larger
total mass volume (a in the shown example case) and continues its
refinement at its resumable shapes using the according rule (Mass1
or Mass2, respectively); finally, the resulting shape tree is embed-
ded using include.

4 Multi-shape coordination with events

The powerful ability to access other shapes during the derivation
(e.g., to establish contextual information) necessitates that these
other shapes already exist. To ensure their existence, often certain
control of the derivation order is needed. In simple cases, a signal-
ing mechanism could be used, where a signal is fired after creating
the required shape, and the rule wanting to access that shape first
waits for this signal. More generally, situations can arise where
only once a whole set of shapes has been created, a decision on
how to proceed evolving each of them can be made, utilizing infor-
mation from all these shapes. As a simple example, when union-ing
multiple shapes, the largest one may be selected and then be mod-
ified by a Boolean union operation with all the remaining shapes,
whereas these other shapes are discarded, replacing each with the
empty shape (NIL). Note that such scenarios require (a) a means for
identifying the set of involved shapes and (b) a facility to coordinate
the individual refinement decisions.

In CGA++, we address all these demands by introducing events.
They serve as synchronization points, offer influence on the order
in which the derivation process refines shapes, and allow multiple
independent branches of the derivation to exchange information and
coordinate how to proceed. Mainly, two elements are involved in
an event: the special event(name) operation and an event han-
dler. The operation raises the specified event within a rule, which
suspends the current branch of the derivation and identifies it as
participant in the event. Once all active branches have raised some
event, the set of participants is completely known, all of them ef-

Parcel --> with(a = < DesignA >, b = < DesignB >) {

case { V(a) > V(b): include(continue(a, Mass = %Mass1))

| else: include(continue(b, Mass = %Mass2)) } }

DesignA --> split("x") { 15: Footprint | ~20: NIL }*

DesignB --> setback(15) { all = Footprint }

Footprint --> extrude(rand(10, 30)) ?Mass

Mass1 --> . . .
Mass2 --> . . .

func V(tree) = sum(map(l : leaves(tree), volume(l)))

V = 83,704 m³

V = 75,876 m³

a

b

Figure 4: Example demonstrating the construction of new trees and
the use of resumable shapes for multi-stage refinement. It considers
two different designs, chooses the one resulting in the larger total
mass volume, and continues its derivation to develop the masses
into detailed buildings.
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Figure 5: An event is raised with the event operation (1) and syn-
chronizes multiple branches of the derivation process (2). Taking
the current shapes of all participating branches as input, the event’s
handler (3) returns a rule for each, specifying how to proceed. This
rule’s actions are then executed directly in-place (4).

fectively having reached a common synchronization point, and the
event handler is consulted. It can access the current shapes of all the
participating branches and makes a coordinated decision on how to
continue in each branch; this is conveyed by yielding one rule for
each participant. Subsequently, each branch is resumed, first ex-
ecuting the respective rule determined by the handler directly in-
place; this basically corresponds to replacing the event operation
with the rule’s actions. Fig. 5 illustrates.

The event handler is specified as part of an event’s definition; this
happens directly within a grammar using the following construct:

event name(param0,. . . ) { priority } = handler

By providing parameters, a whole family of events can be defined,
where each concrete parameter assignment constitutes a separate
event (i.e., e(0) and e(1) are two different events). Among oth-
ers, such parametric event definitions facilitate iterations with an
arbitrary number of steps. Furthermore, each event is assigned a
priority number, which may depend on the parameter values and is
0 if not specified, to guide the order in which multiple concurrent
events are handled.



4.1 Event handling

An event handler ultimately determines one rule for each partici-
pant in the event, whose actions then get executed. The simplest
example of such a handler is just pass, which yields an empty rule
(with no actions) for all participants. It is employed if merely the
synchronization aspect of an event is needed, which ensures that
any shape that exists in a participating derivation branch before
the respective event operation is present and thus accessible in all
these branches right after the event operation. As another, more
advanced example, the handler foreach { actions } yields a rule
whose body is made up by the specified actions for each participant.

In general, an event handler can be an arbitrary expression that
evaluates to a list of rules (one rule for each participant); it may
hence effectively realize an arbitrarily complex, coordinated deci-
sion procedure for how to proceed with all the participants. These
are provided as a list of their respective current shapes via the spe-
cial variable $nodes (such implicitly available variables are always
$-prefixed). Actually, pass and foreach are just two examples of
convenience functions offering a concise notation for common ap-
plication cases. Both take a list of shapes as argument, which in
this context defaults to $nodes if omitted, and return a list of rules.
In case of foreach, this argument is even iterable (cf. also Sec. 5),
which means that actions is evaluated for each shape separately and
can access both this respective shape and its list index via special
variables.

Illustrative example Fig. 6 shows an example where at first a
parcel is subdivided stochastically by recursively splitting off foot-
prints. Our goal is to build an office tower on the largest of them
and apartments on the others. To identify the largest one, we em-
ploy the event IdentifyLargest in the Footprint rule; raising
it initially suspends the further derivation for the respective foot-
print shape. Once all footprints have been generated and entered
the event, its event handler is evaluated. This handler takes the list
of all footprint shapes ($nodes) to derive a list of their areas (A), de-
termines the index of the largest one, and then, using the foreach
function, determines a rule setting the Boolean attribute isLargest
appropriately for each shape. Subsequently, the Footprint rule is
continued, executing the determined rule in-place, thus setting the
attribute. Its value is queried later in the Mass rule to choose the cor-
rect refinement strategy. Note that the goal in this simple example
constitutes one of the typical tasks that cannot be solved with tra-
ditional grammar-based systems. These would require determining
the largest footprint beforehand, which is rarely practical because
of the unknown geometric form of the parcel and the presence of
stochastic elements.

Rule values The flexible use of rules surfacing in the exposi-
tion so far is enabled by granting them first-class citizenship in
CGA++, allowing them as values in expressions as well as their
on-the-fly instantiation. Any rule defined in a grammar can be
referenced by prefixing its name with % (e.g., %A). If the rule
has parameters, it is also possible to obtain a reference to it that
comes with an associated argument list (e.g., %A(20,14)); the re-
turned rule value captures the argument values and is parameter-
less. Furthermore, anonymous rules are supported: the construct
%(param0,. . . )< body > returns a new rule, with the values of all
variables from outside the rule that are referenced by the actions in
body being captured. That is, the value of such a variable at the
time that the rule is created by the construct is stored as part of the
rule value. Such capturing of input values is extremely powerful,
allowing individualized rules and transferring information. In par-
ticular, it is fundamental for the support of general event handlers
and hence used extensively (among others, by the foreach func-
tion, which returns a list of anonymous rules %< actions >). A given

Parcel --> split("x") { rand(8, 16): Footprint | ~1: Parcel }

Footprint --> event(IdentifyLargest) extrude(area()/6) Mass

Mass --> case { get("isLargest"): Offices | else: Apartments }

Offices --> . . .
Apartments --> . . .

event IdentifyLargest =

with(A = map(n:$nodes, area(n)), largest = index(A, max(A)),

foreach($nodes) { set("isLargest", $index == largest) } )

Figure 6: Example showing a simple common use case for events.
The event IdentifyLargest is used to identify the largest foot-
print resulting from randomly subdividing a parcel; the correspond-
ing mass is then developed into an office building, whereas apart-
ments are erected on all the other footprints.

rule can be invoked or executed in-place within a rule body via the
operations invoke and apply, respectively. Note that the latter one
enables rules to be utilized as a kind of macro for sequences of ac-
tions that are used at multiple occasions in a grammar; for example:

FlattenY --> s(’1, 0, ’1) set("scope.ty", 0)

InitialShape --> apply(%FlattenY) . . .

Hierarchical handling There are situations where, once the set
of event participants has been established, a division of these into
(disjoint) groups emerges and further coordination is only neces-
sary (and most conveniently done) locally within each individual
group. For instance, such groups may be induced by spatial rela-
tionships between shapes, such as (transitive) adjacency or overlap.
Handling such cases is facilitated by dedicated partitioning func-
tions. These offer various ways of partitioning a list of shapes ac-
cording to some criterion. For each resulting group, a given event
handler expression can then be evaluated separately just for this
group. Finally, the partitioning is reversed by merging the lists of
rules yielded by the handlers for all groups accordingly, thus pro-
ducing a single list of rules for all event participants. As a concrete
example (cf. Fig. 7), consider the task of resolving overlaps among
shapes before continuing their further development. Once a shape
has been placed, an event can be raised, whose handler breaks the
set of all participating shapes into subsets of connected shapes and
pursues an overlap resolution strategy for each subset:

event ResolveOverlaps =

partitionByPred($nodes, overlaps($a, $b), (S1)
subtractLargerOnes($groupNodes))

partitionByPred partitions the list of shapes ($nodes) such that
any two elements ($a, $b) for which the predicate (overlaps)
evaluates to true are put into the same group. For each resulting
group of transitively overlapping shapes ($groupNodes), the han-
dler subtractLargerOnes (defined in the supplemental material)
is evaluated; it yields rules that subtract from each shape all over-
lapping shapes with a larger area.

Coordination support Coordinating the future of multiple
shapes may involve abandoning some of them (e.g., because they
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Figure 7: Illustration of the event handler in snippet S1 on a simple example of overlapping shapes. First, a dynamic grouping of all
participating shapes is performed, identifying subsets of transitively overlapping shapes. For each group, a handler implementing the overlap
resolution strategy (subtractLargerOnes) is consulted. It returns the according actions as rule values. These are finally collected into a
joint list for all groups, whose order matches the one of the event’s input list of shapes.

were union-ed into another shape); this is simplified by two new op-
erations: stop aborts the execution of the current rule body, causing
all remaining actions to be ignored. kill additionally removes all
shapes resulting from the current rule body from the final result (by
adding an empty shape as successor to each according leaf node). In
the case that coordination requires further participant-specific val-
ues, attributes of the respective current shape can be employed: be-
fore raising the event, the necessary input parameters are simply set
as attribute(s); analogously, attribute-setting operations can appear
in the rule returned by the handler to communicate specific output
quantities (as in the grammar in Fig. 6).

4.2 Advanced scheduling

The capabilities and the expressiveness of events are enhanced with
event groups and the ability to wait for events; these also influence
the order in which events are handled and actions across different
branches of the derivation process are executed.

Event groups To accommodate the frequent scenario where dif-
ferent subtrees of the evolving shape tree should be coordinated
analogously but independently from each other, the concept of
event groups exists. They provide an easy means to confine an event
to a certain subtree, while allowing multiple such subtree-specific
instances of the event at a time. For example, when using events to
coordinate across the floors of a building, event groups allow that
a separate, local instance of an event is raised for each building,
in which only the floors of this single building participate (instead
of the floors of all buildings). Concretely, a group node identifies
a subtree and is created with the operation group(name), which
further causes all shapes created by succeeding actions to become
descendants of the group node. By specifying the group name as
an additional argument in the event operation, the event becomes
local to the subtree rooted in the closest group node ancestor with
a matching name (otherwise, the shape tree’s root is taken). Each
resulting event instance, defined by an event and a subtree, is then
handled separately. An illustrating example is provided in Fig. 8.

Note that event instances explicitly cover a special case of hier-
archical handling, where the subset each participant belongs to is
directly specified at the time of raising the event (via the respective
group node). Event groups effectively provide a scoping mecha-
nism, and this interpretation is also reflected in which order event
instances are handled.

Scheduling Before detailing how events interact with the deriva-
tion process, let us first clarify the notion of derivation branches.
During the derivation process, the execution of actions within a rule

body can introduce new shapes. Their respective refinement consti-
tutes a new branch of the derivation; these can be carried out in-
dependently from each other as well as any further existing branch,
including the one that previously introduced the shape to be refined.
A symbol, for instance, instantiates the current shape, and because
any subsequent refinement of this new shape (specified by the rule
corresponding to the symbol) has no effect on the state of the current
shape, this refinement can be performed independently from the ac-
tions following the symbol (determining the further refinement of
the current shape).

Within each branch, actions are executed sequentially until an event
is raised, causing the branch to be suspended. Once this happened
to all active branches, the highest-priority event instance pending
is determined. The according event handler is evaluated, and the
branches participating in the event instance are resumed, initially
injecting the actions of the respective rule returned by the handler.
Note that any further pending event instance is only handled once
all branches are suspended again (and thus these branches’ par-
ticipation in the event is known). When determining the highest-
priority event instance, dependencies among the roots of the in-
stances’ subtrees are regarded: we exclude all instances whose root
has any other instance’s root as a descendant from the selection.
This is motivated by considering each instance’s subtree as defin-
ing a scope and causes any nested scope to be handled before its
enclosing one.

Signaling Events can be used to signal the availability of a certain
set of shapes. The wait operation allows a branch of the derivation
to wait for such a signal; it suspends the branch until a specified
event got handled within a certain subtree. To this end, we keep
a list of pending and processed events for the root of each subtree
encountered in an event instance. In case all derivation branches are
waiting for events, we report a warning and resume the one waiting
for the highest-priority event instance.

5 CGA++ grammar language

Exposing shapes as first-class citizens and introducing events as a
flexible and powerful means of coordination are cornerstones in
enhancing the capabilities of existing grammar languages such as
CGA shape and enable successfully addressing the limitations out-
lined in the Introduction. These novel language elements of CGA++
are complemented by several further new language features, which
offer simpler, clearer, and more concise forms of notation and en-
hance the expressiveness. Some of them are also instrumental in-
gredients for fully realizing the concepts of shape values and events
(e.g., lists).



Supported objects In addition to Booleans, numbers, and
strings, CGA++ supports lists and tuples. Lists are sequences of
an arbitrary number of values of identical type, whereas tuples rep-
resent fixed-size sequences of values of possibly different types.
Furthermore, shapes and rules but also functions are available as
first-class citizens and hence can be used as values in expressions.
Both built-in and user-defined functions can be referenced by their
respective name. Moreover, CGA++ supports anonymous func-
tions: the construct [param0,. . . ](body) yields a new function
value, where any variable from outside the function referenced in
the expression body has its value captured as part of the function
value (thus forming a closure).

Expression arguments One example of a new language feature
that aims at ease of expression and providing a succinct syntax is
expression arguments. They are supported by many built-in func-
tions processing multiple items (such as the elements of a list) and
allow specifying expressions that are to be evaluated by a function
(e.g., for each item) directly as arguments to this function. Within
such an expression, evaluation-specific values (such as the current
item) are exposed via implicit variables. For instance, in snip-
pet S1, overlaps($a, $b) constitutes an expression argument
that is evaluated by partitionByPred for each pair of shapes,
where a pair’s elements are accessible via $a and $b. Note that in
case of the convenience function foreach (cf. Sec. 4.1), the speci-
fied actions also act as an expression argument.

Iterable arguments If a function takes a list as one argument and
evaluates an expression argument for each element of this list, then
a semantically meaningful name for accessing the respective ele-
ment within the expression argument can be specified as part of the
list argument (name : list). (If omitted, the element is available via
an implicit variable.) Moreover, the element’s index is exposed as
an implicit variable.

Chain operator When iteratively applying a sequence of func-
tions to a value, the chain operator -> can be useful for improving
legibility; it applies its left-hand side as first argument to its right-
hand side. For instance,

this -> t(2, 0, 2) -> s(2, 9, 6) -> r(30, 0, 0)

is equivalent to but easier to parse (for many humans) than

r(s(t(this, 2, 0, 2), 2, 9, 6), 30, 0, 0).

Implicit argument In some contexts, there exists a natural, well-
defined value for which an occurring function is generally applied.
Supporting notational conciseness, we hence often allow simply
omitting this value. For example, if a built-in function appears
within a rule body and accepts a shape as first argument, the current
shape (this) is automatically used if this argument is omitted. Sim-
ilarly, the list of participating shapes ($nodes) is used implicitly as
first argument in an event’s handler expression.

Auxiliary variables In numerous situations, like when dealing
with complex expressions or using the result of an expression mul-
tiple times, clarity and ease of formulation can benefit from intro-
ducing variables for the values of some involved expressions. To
this end, the new construct

with(var1 = value1, . . . , expression)
with(var1 = value1, . . . ) { actions }

is provided, which allows assigning values to variables and sub-
sequently using them in an expression or within the arguments of
actions, respectively (as done in the grammars in Figs. 4 and 6).

Enhanced operations Several operations offered by CGA shape
[Esri 2015] have been enhanced in CGA++ to capitalize on its new

Building --> . . . group("bldg") . . . comp("f") { . . . Facade . . . } . . .
Facade --> . . . group("fac") . . . split("y") { . . . Floor . . . } . . .
Floor --> . . . event( . . . ) . . .
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Figure 8: Example demonstrating how event groups can be used to
restrict an event instance to a subtree. Top: Excerpt from a gram-
mar, in which groups are opened and events are raised. Middle:
Resulting (simplified) shape tree, showing group nodes in green.
Bottom: Depending on the group name specified when raising the
event, different event instances result. event(E, "fac") causes
only derivation branches refining floors of the same façade to par-
ticipate in an event instance, event(E, "bldg") restricts an event
instance to a single building, and event(E) includes all branches
in the event.

features. For instance, some subdivision operations such as comp
(component split) expect a list of selector:actions pairs, each iden-
tifying a specific set of parts and defining according actions for their
further refinement. If an = separator is used instead of :, the parts
are not refined individually but merged and processed as one sin-
gle shape. In CGA shape, values for selector are restricted to some
predefined selectors (such as left, top, side, or all), thus lim-
iting the selection possibilities. By contrast, CGA++ allows an ar-
bitrary predicate expression for selector, which can reference the
respective part to check for a match (exposed as shape value) and
related quantities, such as its index, via implicit variables. Previ-
ous selectors such as left and top have been turned into (locally
available) built-in functions that take a shape as argument and clas-
sify it according to some properties, such as the direction of its
surface normal. Once again aiming for notational conciseness, the
part’s shape generally does not have to be explicitly provided as
argument for such selector functions. Concretely, if selector eval-
uates to a function, this function is applied implicitly, using the
part’s shape as argument if one is expected; this policy extends
to the operands of logical operators (it is also often pursued for
expression arguments). Consequently, complex selections such as
(left || top) && $index < 10 become possible and without
compromising the succinctness.

6 Applications

Demonstrating the new modeling capabilities offered by CGA++,
we present three concrete examples in the following. They cover
different application domains and showcase modeling problems
whose solution eludes previous grammar-based procedural sys-
tems.
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Figure 9: Perimeter block design. Top: Pursued modeling strategy
and involved design parameters. Middle: Example results for dif-
ferent parameter choices. Bottom: Example of a real-world urban
planning result.

6.1 Urban planning

Our first example originates from interaction with urban planners
and incorporates many of their day-to-day requirements. It shows
that previously impossible parametric urban design rules can easily
be encoded with CGA++, demonstrating that our language is well
suited for urban planning applications.

One typical task for urban planners is designing the so-called
perimeter block, a block parcel with buildings on its boundary.
Fig. 9 shows the involved parameters that urban planners work with
and presents example results obtained with the following grammar:

Parcel --> set("parcelArea", area())

setback(depth) { all: Footprints | remainder: GreenSpace }

Footprints -->

split("x") { ~cornerWidth: event(MergeTouching) Footprint

| { ~unitWidth: event(SelectTower) Footprint }*

| ~cornerWidth: event(MergeTouching) Footprint }

Footprint -->

case { get("isTower"): s(’1, ’1, ’1.5) . . . Tower

| else: event(SetToGreenSpace) . . . Building }

. . .
Floor --> event(CalcFAR)

set("material.color.rgb", ramp(get("FAR")/10)) . . .

As illustrated in the top of Fig. 9, the setback and split opera-
tions first refine the parcel. The event MergeTouching is used to
perform a Boolean union operation on the corner footprints:

event MergeTouching =

partitionByPred($nodes, touches($a, $b), U($groupNodes))

func U(shapes) = foreach(shapes) {

case { $index == 0: union(shapes) | else: kill } }

First, (transitively) touching footprints are grouped together; the
shapes in each group are then union-ed into the first shape of the

group. Note that with select and forall alternatives for foreach
exist that would yield an even more compact syntax in this case.

The event SelectTower is analogous to IdentifyLargest in
Fig. 6 but uses a different selection criterion. Instead of determining
the footprint with the largest area, it flags the one positioned most in
the direction given by the design parameter tower (e.g., "north").

With the event SetToGreenSpace, the common rule authoring
challenge of doing something only on a specific fraction or num-
ber of shapes is tackled. In traditional systems such as CGA shape,
the author may only pursue a stochastic approach, i.e., invoke the
according rule with a probability matching the envisaged fraction,
and hope that chance yields the desired result. By contrast, CGA++
allows selecting a deterministic number of shapes:

event SetToGreenSpace = with(

k = rint(size($nodes) * openingPercentage),

r = map($nodes, case { $index < k: %< GreenSpace stop >

| else: %< > } ),

shuffle(r))

After deriving the number k of footprints that should be turned into
green space, a list of rules is compiled, comprising exactly k times
the rule for green space development and the empty rule %<> for
the remaining footprints, and then randomly permuted. As a result,
when resuming the Footprint rule, the GreenSpace rule is in-
voked for k random footprints; the accompanying stop operation
causes the rest of the Footprint rule to be skipped in those cases.

Finally, CalcFAR showcases a further typical application of events:
analyzing the geometry as a whole after generation.

event CalcFAR = with(gfa = sum(map(n : $nodes, areaTop(n))),

foreach($nodes) { set("FAR", gfa / get("parcelArea")) } )

The gross floor area (i.e., the total area on all floors) is computed,
and the value of the resulting floor area ratio (FAR), which is an
important density indicator in urban planning, is set as an attribute.
Its value can then be used later on, e.g., to colorize the model.

6.2 Buildings

The encoding of procedural building designs often poses several
challenges. In this example, we present potential solutions to a few
commonly encountered ones, enabled by CGA++’s new features.

Inspired by plans for ecological skyscrapers in Asian mega cities,
offering plenty of green space for sustainable living, our example
design consists of (at most) two tower blocks, featuring shifted
floors and terraces hosting roof gardens, that are linked by a series
of skybridges, as shown in Fig. 10. The main design parameters are
the gross floor area (GFA) and the maximum building height allowed
(maxH); these are typically given by the investors and the authori-
ties. One approach to meet these requirements is demonstrated by
the following grammar:

Parcel -->

split("x") { ~1: BldArea | ~1: GreenSpace | ~1: BldArea }

BldArea --> event(DistributeGFA)

extrude(get("nFloors") * floorH) Tower

event DistributeGFA = with(

A = map(s : $nodes, area(s)),

n1 = numFloors(A[0], GFA),

n2 = numFloors(A[1], GFA - A[0] * n1),

map(n : list(n1, n2), %< set("nFloors", n) >))

func numFloors(shapeArea, targetFloorArea) =

min(ceil(targetFloorArea / shapeArea),

floor(maxH / floorH))

Given a parcel, at first two buildable areas (BldArea) for the towers
are created. Subsequently, the GFA needs to be distributed among



shift floors add detailterraces & bridgesdistribute GFA 50,000 m²70,000 m²GFA = 90,000 m²result

Figure 10: Building design with (at most) two interconnected towers and shifted floors that provides a given GFA (gross floor area). Left:
Major steps of the modeling approach. Middle: Close-up views of the example result. Right: Results for different GFA values.

them. To this end, we want to assign as much as possible of the
floor area to the first tower without exceeding the maximum build-
ing height and make the second tower only as high as needed to
provide the remaining floor area (we use maxH = 230 m and a floor
height floorH = 4 m for all results shown).

This is one specific instance of the frequent problem that multiple
building parts have to jointly fulfil an overall requirement. As the
sizes of buildable areas are only known after these have been cre-
ated, each area does not know about the size of the others without
some form of communication. While an according device is miss-
ing in traditional grammar-based systems, making them severely
struggle with such tasks, CGA++ offers events as a convenient so-
lution. Concretely, we employ the event DistributeGFA to access
the areas of all BldArea shapes and then compute the number of
floors for each tower, conveying it via the attribute nFloors.

The resulting building mass for each tower is then refined by split-
ting it into floors and stochastically shifting them horizontally:

Tower --> group("tower")

split("y") { floorH: set("floorIdx", get("split.index")) . . .
t(randShift(), 0, randShift()) Floor }*

Floor -->

event(CreateTerraces, "tower") event(CreateBridges)

comp("f") { bottom: FloorPlane | side: Facade }

func randShift = prob { 0.35: 4 | 0.35: -4 | else: 0 }

To create the terraces, we have to determine those parts of the
floors’ top surfaces that are not occluded by the bottom surface of
the respective next floor, and we again employ an event for this. As
this terrace extraction is purely local to each tower, we define an
event group “tower” in the Tower rule that encompasses all floors
of one tower. Hence, a distinct event instance is raised for each
tower in the Floor rule, allowing us to handle each individually:

event CreateTerraces = with(

f = [s](get(s, "floorIdx")),

byFloor = append(sort($nodes, f($a) < f($b)), null),

above = map(n : $nodes, byFloor[index(byFloor, n) + 1]),

foreach($nodes) {

comp("f") { top: minus(above[$index]) Terrace } } )

First, the floors are sorted in ascending order by their index (which
was assigned when splitting the tower mass). For convenience,
we employ a local auxiliary function f, which is defined using
CGA++’s anonymous function facility. Subsequently, for each floor
the floor above can easily be determined by consulting the sorted
list. This floor above is subtracted from the top surface of the floor
to yield the terrace area. Note that this modeling task is an exam-
ple of the common problem of determining the exact residual of a
surface after the stochastic placement of elements on top of it.

The skybridges connecting some of the floors of the two towers are
also created via an event:

event CreateBridges =

partitionByNumber(n : $nodes, get(n, "floorIdx"),

createBridge($groupNodes))

func createBridge(floors) = case {

size(floors) != 2 || p(0.9): pass(floors)

| get(floors[0], "scope.tx") < get(floors[1], "scope.tx"):

list(%< BridgeTo(floors[1]) >, %<>)

| else: list(%<>, %< BridgeTo(floors[0]) >) }

BridgeTo(target) --> with(

targetFace = comp(target, "f") { left } -> first -> first)

{ comp("f") { right: connectTo(targetFace) Bridge } }

First, the floors of both towers are grouped by their floor in-
dex via partitionByNumber, which functions analogously to
partitionByPred but establishes groups by identical number val-
ues instead of by a binary predicate. As we aim at connecting only
a few randomly selected floors, we do nothing with a probability of
90% or if the floor exists in only one tower. In the remaining cases,
we select the floor of the left tower and connect its right face to the
left face of the other floor from the right tower via the connectTo
operation, which creates a connecting tube. Note that for determin-
ing the target face from the right tower, the function equivalent of
the component split operation is used.

Finally, the façades, terraces, and skybridges are refined to add pro-
cedural detail, including placing vegetation models.

6.3 Façades

Alignment plays a central role in many real-world applications, but
complex cases can often not be realized with existing grammar-
based systems, especially if random elements are involved. CGA++
introduces the means to successfully deal with such problems,
which we demonstrate with an example of generating random front
façades.

Let us assume the following design objectives: (a) all floors should
feature randomly placed elements (e.g., windows); (b) all upper
floors should look identical; (c) the first floor should have one door
that is center-aligned with an element of the upper floors or the
empty space between two such elements; (d) the other elements in
the first floor should align on both their left and their right with the
left or right of an upper-floor element; (e) elements (and the façade
boundaries) should be separated by empty wall space whose width
lies within a certain interval.

The following grammar, whose high-level approach is illustrated in
Fig. 11, offers one potential solution for implementing this design
with CGA++ (see the supplemental material for omitted details):



FrontFacade --> with(

emptyFs = split(this, "y") { ~2.5 | { ~2.3 }* },

topF = refine(last(emptyFs), %FillUpperFloor),

middleFs = map(f : sublist(emptyFs, 1, size(emptyFs) - 2),

transformScope(topF, f)),

firstF = createFirstFloor(first(emptyFs), topF))

{ include(firstF) include(middleFs) include(topF) }

We first split the façade into multiple floors with the split func-
tion, which yields a list of resulting shapes. The one correspond-
ing to the top floor is then refined with the rule FillUpperFloor.
Afterward, this resulting shape (sub)tree is copied to the middle
floors via transformScope, which adjusts the scope to match the
respective middle floor’s one. Finally, the first floor is created with
createFirstFloor, before the trees representing the floors are
embedded via include.

Top floor The elements that may be placed in an upper floor are
encoded as a list, which provides for each element an according
rule and its permissible minimum and maximum width:

const upperFloorElems = list(

tuple(%WindowCell(%SingleWindow), 0.6, 1.0),

tuple(%WindowCell(%DoubleWindow), 1.0, 1.4))

The rule FillUpperFloor first determines the available space and
then derives those elements from the list fitting into this space:

FillUpperFloor --> with(

availSpace = get("scope.sx") - 2 * minWallW,

availElems = filter(e : upperFloorElems, e[1] <= availSpace))

{ case { size(availElems) > 0: with(

elem = randomElem(availElems),

w = rand(elem[1], min(elem[2], availSpace)),

wallW = minWallW

+ rand(0, min(maxWallW - minWallW, availSpace - w)))

{ split("x") { wallW: Wall

| w: set("floorCell", true) invoke(elem[0])

| ~1: FillUpperFloor } }

| else: Wall } }

If none fits, a wall piece is created; otherwise, we stochastically
choose an element and widths, satisfying the design’s constraints,
for this element and the wall to the left of it. The wall and the ele-
ment (marked as a floorCell) are then split off, and the remaining
part of the floor is filled recursively.

First floor The construction of the first floor showcases context-
sensitive splits with non-trivial alignments:

func createFirstFloor(f, ref) = with(

cells = getCells(ref),

candidatePlacements = legalDoorPlacements(f, cells),

placement = randomElem(candidatePlacements),

doorW = rand(minDoorW, placement[1]),

refine(f, %< split("x") {

placement[0] - doorW/2: FillFirstFloor(cells)

| doorW: DoorCell

| ~1: FillFirstFloor(cells) } >))

At first, the elements from a reference floor (ref) marked as
floorCell are determined by getCells, which traverses that
floor’s shape tree. From these, all places (encoded by the center po-
sition) where a door can be put satisfying all constraints (such as the
center alignment), along with the according maximum door widths
are derived by legalDoorPlacements. One of these candidate
placements and a corresponding door width are then stochastically
selected, and an according split is performed. The remaining parts
left and right to the door are refined by the rule FillFirstFloor,
which randomly places elements in a greedy manner such that verti-
cal alignment across floors as required by objective (d) is achieved.

fill top floor
randomly

copy to
middle floors

legal door
placements

place door
randomly

randomly fill rest of first floor
(respecting alignments)

example results

Figure 11: Façade design with random elements and alignments.
Top: General solution approach (split lines are shown in red). Bot-
tom: Example results for different random seeds.

7 Discussion

In the following, we discuss design choices made, briefly explore
potential alternative solutions, and relate our solution to prior work.
Furthermore, we identify limitations and open challenges.

7.1 Implementation

We implemented a prototype of CGA++ that supports all features
presented in this paper and offers a large subset of the operations
available in the latest dialect of CGA shape [Esri 2015] (including
all those outlined in the reference in the supplemental material).
Our application takes a grammar as input and compiles it to an in-
termediate form, performing limited static type checking as well
as a few optimizations (e.g., constant forwarding). Given an initial
shape (typically a polygon representing a lot), the compiled gram-
mar is then executed, returning the leaf shapes constituting the final
model.

7.2 New language features

Two important aspects of any language are (a) what can be ex-
pressed, realized, and achieved with it, and (b) how easy this is.
Both first-class citizenship of shapes and the concept of events pri-
marily target the first aspect, without neglecting the second one.
They significantly advance the capabilities of previous grammar
languages and offer a seemingly simple but extremely powerful and
(as we believe) elegant solution for addressing many existing fun-
damental limitations of what can be modeled with such languages.
By contrast, many other new language elements are mainly mo-
tivated by the important quest for ease of expression. Therefore,
some of them are not necessary from a purely technical point of
view, even including the convenient first-class citizenship of rules
and functions (see the supplemental material for details).

One guiding objective when devising CGA++ was to offer a consis-
tent, concise, readable, and meaningful syntax for the new features
without compromising generality and expressiveness or breaking
any established language concepts. For instance, convenience con-
structs for event handling, such as foreach or the more versatile
select, cover many common use cases and are designed to offer a
compact syntax analogous to that of subdivision operations, where
actions can be directly specified (without having to explicitly wrap
them into an anonymous rule). By exposing these constructs as
functions and not restricting event handlers to those preconceived
constructs (and cases) but allowing arbitrary expressions yielding a
list of rules instead, arbitrary custom solutions are possible when
desired and can even readily employ the convenience functions as
building blocks. Such a custom solution may also be encapsulated
in a function and then used as building block itself.



In the design of CGA++, we partially drew inspiration from the
plethora of existing programming languages, in particular func-
tional languages (such as Scheme), recent functional extensions to
mainstream languages (such as in C++11), and scripting languages
with a focus on (and notoriety for) conciseness (such as Perl).

7.3 Solution approaches

In general, various approaches are conceivable to cope with ad-
vanced modeling scenarios and strategies that are precluded in cur-
rent grammar languages due to the limitations described in the In-
troduction. With CGA++, we are the first to offer an integrated
solution within a grammar language. Carefully evolving an estab-
lished language and introducing novel language elements, CGA++
hence allows mastering such modeling challenges without having
to leave the familiar realm of a grammar language or even abandon
the advantages of grammars, such as their notational effectiveness.

Alternatively, one may switch to a (suitable) more general (non-
grammar) language to perform procedural modeling; potential can-
didates include scripting languages in modeling software or lan-
guages for generative modeling, such as GML [Havemann 2005].
However, as detailed in the supplemental material, such a solution
entails some practical challenges and inconveniences. At least in
some cases, one further option can be resorting to external tools,
such as to a standard modeling software for performing Boolean
operations. Among others, these are often hard to integrate in the
modeling workflow, easily causing some disruption, and may re-
quire significant manual effort, harming scalability, though.

7.4 Related variants and extensions of CGA shape

A significant body of prior work deals with grammar-based proce-
dural modeling, and CGA++ subsumes and extends multiple capa-
bilities and features of them. Krecklau et al. [2010] suggest a more
object-oriented variant of CGA shape, called G2. It associates each
shape with a certain class, where a separate set of operations is pro-
vided for each class. A simplified form of CGA shape is captured
by one class, while trilinear freeform deformation cages are newly
offered by another class. Generalizations such as this or support for
convex polyhedral scopes [Thaller et al. 2013] may be orthogonal
to CGA++’s focus but remain applicable to CGA++ as well. Fur-
thermore, G2 offers several enhancements that simplify grammar
writing, including shape-local Boolean flags and the ability to pass
rule names as arguments. The latter (which is actually necessitated
by G2’s syntax, where subdivision operations expect part-refining
rules as arguments) constitutes a first step toward the comprehen-
sive first-class treatment of rules in CGA++, whereas flags are sub-
sumed by CGA++’s support for arbitrary user-defined attributes.

To allow for local modifications in their visual editor, Lipp et al.
[2008] introduce semantic tags and instance locators as means to
identify subsets of nodes. Such tags effectively attach a name to
the root node of a subdivision operation’s result, while a locator
identifies a particular node in the shape tree via a sequence of child
indices. Both concepts are external to and not exposed in the edited
grammar itself. By contrast, CGA++ can easily realize semantic
tags via attributes and represent locators; in particular, these can be
fully used and acted on in the grammar.

Patow [2012] proposes a system based on a graph-based interpreta-
tion of a grammar’s set of rules. In follow-up work [Barroso et al.
2013], complex graph-rewriting is further explored, which could
be adapted to CGA++. Finally, several language extensions exist
that primarily target specific applications such as creating intercon-
nected structures [Krecklau and Kobbelt 2011] or assisting lighting
design [Schwarz and Wonka 2014]. In principle, according domain-
specific operations could also be added to CGA++.

7.5 Context sensitivity in grammar systems

Taking context into account is often essential in realizing complex
and varied results. In grammar systems for procedural content cre-
ation, the degree and the form of according support vary. For in-
stance, in the case of L-systems [Prusinkiewicz and Lindenmayer
1990], the directly adjacent textual context of a string element can
be considered for rule selection. Moreover, extensions exist that
allow querying the environment [Prusinkiewicz et al. 1994], com-
municating with the environment [Měch and Prusinkiewicz 1996],
accessing user-defined curves [Prusinkiewicz et al. 2001], filling
in suitable argument values [Parish and Müller 2001], and token-
based message passing among guides hosting L-systems [Beneš
et al. 2011]. All of them have in common that they rely signifi-
cantly on elements external to the L-system.

Classical shape grammars [Stiny 2006] involve geometric matching
of (sub)shapes, and it is hence possible to take the immediate spatial
context into account when deciding whether a rule can be applied.
An extension [Liew 2004] further offers a few special context pred-
icates to this end. Such a spatial context roughly corresponds to the
textual context in L-systems, but because the shape specified as a
rule’s head only needs to occur in the context and not form the full
context to yield a match, a larger class of cases is supported. How-
ever, the considered context remains purely local, and hence deci-
sions involving multiple spatially unrelated shapes, such as acting
only on the largest one, are not possible. By contrast, our language
allows for such abstract contextual conditions (e.g., by involving
the shapes in question in an event).

Symbolic shape grammar languages, such as CGA shape [Müller
et al. 2006], basically approach support for context sensitivity by
offering dedicated language elements for a few common problems
(the supplemental material covers some of them in depth). The
most prominent example is considering the occlusion of the cur-
rent shape by some other shapes, for which query functions [Müller
et al. 2006] and related operations, such as removing all occluded
parts [Schwarz and Wonka 2014], were devised. Further language
extensions introduce support for a limited form of alignment via
consistent splits, where special snap shapes can be emitted and then
taken into account by subsequent subdivision operations [Müller
et al. 2006], as well as facilities for collecting (rectangular faces of)
shapes, identifying pairs of them, and connecting each pair’s two
elements [Krecklau and Kobbelt 2011]. A related extension sug-
gests rules that apply not to one shape but to the collection of all
shapes with a given symbol [Thaller et al. 2013] (without consider-
ing the problem of when in the derivation process such a rule can
and should be applied, though).

By contrast, with shapes’ first-class citizenship and events, CGA++
aims for a generic solution and extends the possibilities for context-
sensitive refinement significantly. In particular, making the full
shape tree accessible within a grammar enables the grammar to
compile a wide spectrum of contextual information (such as finding
spatially close shapes). This is assisted by events, which provide a
device for influencing the derivation order such that the availability
of shapes required for forming a context can be ensured. Moreover,
an event can be an effective means itself for establishing a com-
plex context, where participation in the event conveniently identi-
fies related shapes; it further allows for coordination across all the
involved shapes when acting on the context. Note that the func-
tionality of existing ad-hoc solutions (such as the above examples)
can often be replicated and augmented using just CGA++’s general
language features.

Additionally, for several applications, solutions external to a shape
grammar language exist. One example is embedding a grammar
into a feedback loop to optimize the grammar’s parameters such



that the resulting building satisfies certain structural soundness cri-
teria [Whiting et al. 2009]. Interestingly, with CGA++, such (self-
sensitive) iterative (re)creation and analysis of results become pos-
sible in the grammar itself (via spawning new derivation processes
and operating on shape trees). Note, however, that depending on
the complexity of the computations involved in the analysis, using
a grammar language for this step may not be appropriate.

7.6 Guidance of derivation order

Not least to ensure that when performing a contextual query certain
shapes are already available and hence considered, exercising some
form of influence on the derivation order is often necessary. Com-
pared to concepts such as priorities [Müller et al. 2006], evaluation
phases [Steinberger et al. 2014], and construction stages [Schwarz
and Wonka 2014], which all merely operate globally (see the sup-
plemental material for a critical review), CGA++ offers a more flex-
ible and convenient solution with events, which serve as general
synchronization points. In particular, local and hierarchical depen-
dencies among derivation branches may be expressed directly and
easily using event groups.

7.7 Limitations and open challenges

While CGA++ overcomes important limitations of existing gram-
mar languages and systems, there are still many modeling tasks
that cannot be handled completely, and some of those that can may
be unnecessarily complex to express. For example, the provided
subdivision operations, even though slightly enhanced with respect
to existing systems, are insufficient to cope with situations where
the split should take actual features of the shape to subdivide into
account and may not even be definable by a single cut plane. Es-
pecially given that the Boolean operations enabled by CGA++ can
easily introduce complex forms with holes, devising appropriate,
more powerful subdivision operations is an important challenge to
be addressed by future work. Another avenue is investigating how
the new expressiveness can be exposed in advanced user interfaces,
such as visual grammar editors [Lipp et al. 2008].

8 Conclusion

We have presented CGA++, a novel shape grammar language for
the procedural modeling of architecture that increases expressive-
ness significantly compared to the state of the art. Cornerstones
of our language are making shapes full first-class citizens and of-
fering coordination across multiple shapes via events. They are
complemented by a rich set of built-in functions and syntactic de-
vices that facilitate a concise and comprehensible notation. As we
have demonstrated with several examples, CGA++ overcomes var-
ious limitations inherent to current systems and enables many new
applications and solutions to previously elusive modeling tasks.
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