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Abstract

Compact surface descriptions like higher-order surfaces are popular representations for both modeling and an-

imation. However, for fast graphics-hardware-assisted rendering, they usually need to be converted to triangle

meshes. In this paper, we introduce a new framework for performing on-the-fly crack-free adaptive tessellation of

surface primitives completely on the GPU. Utilizing CUDA and its flexible memory write capabilities, we paral-

lelize the tessellation task at the level of single surface primitives. We are hence able to derive tessellation factors,

perform surface evaluation as well as generate the tessellation topology in real-time even for large collections of

primitives. We demonstrate the power of our framework by exemplarily applying it to both bicubic rational Bézier

patches and PN triangles.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms; I.3.5
[Computer Graphics]: Curve, surface, solid, and object representations

1. Introduction

Triangles have become the standard rendering primitive in
real-time graphics with graphics hardware being highly opti-
mized for their processing. However, when it comes to mod-
eling, usually other primitives like higher-order smooth sur-
faces are employed. Not only are they often less tedious to
work with and provide a compact representation, but also
naturally maintain visual smoothness irrespective of ever in-
creasing display resolutions. For rendering, they are then tes-
sellated to get a triangular mesh approximation.

In many applications, it is desirable to perform this tes-
sellation on-the-fly instead of in a preprocessing step. For
instance, it is much easier to animate a coarse control mesh
than to deal directly with a fine triangular mesh. Also, by dy-
namically varying the tessellation’s sampling density, adapt-
ing to changing view points becomes straightforward. For
high performance, the surfaces should only be tessellated as
fine as actually required because the evaluation per sample
point can be rather expensive and unnecessarily small trian-
gles negatively impact the GPU’s effective parallelism. Con-
sequently, an adaptive tessellation is performed where each
surface primitive is tessellated to its optimal degree. To avoid
cracks, the tessellation factors along boundary curves shared
by multiple primitives must be chosen consistently.

The actual tessellation should preferably be carried out

on the GPU, both to harness its computational power and
to avoid having to transfer huge amounts of geometry data
onto the GPU every frame. This is traditionally performed
in a vertex-parallel way, where for each primitive vertices
according to sample points in the primitive’s domain are
issued, either by explicitly rendering a tessellation pattern
mesh or from a dedicated tessellation unit. In the vertex
shader, the provided (u,v) domain coordinates are then em-
ployed to evaluate the actual surface points. On the other
hand, recent non-graphics APIs like CUDA [NVI08] or
CAL/Brook+ [AMD08] expose scatter memory writes to
the programmer, i.e. a thread can write to multiple arbitrary
memory locations. It thus becomes possible to approach the
tessellation task at a different granularity of parallelism.

In this paper, we introduce a new framework for on-the-
fly adaptive tessellation utilizing CUDA, called CudaTess.
All major steps like deriving consistent tessellation factors,
determining sample points, evaluating actual surface points,
and creating the topology are run completely on the GPU.
By adopting a single surface primitive as unit of paral-
lelism, we are able to efficiently construct vertex and index
buffers and can readily employ primitive-scale techniques
like forward differencing [Wal90] which are not applicable
in vertex-parallel settings. We demonstrate the potential of
our framework on two concrete examples: bicubic rational
Bézier patches (Sec. 3) and PN triangles (Sec. 4).

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Michael Schwarz
Notice
This is the author's version of the work. The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.



M. Schwarz & M. Stamminger / Fast GPU-based Adaptive Tessellation with CUDA

1.1. Related work

There exist many papers on CPU-guided adaptive tessella-
tion targeted towards single modeling primitives like spline
surfaces [CK01] and subdivision surfaces [SMFF04], as well
as on dedicated hardware solutions for tessellating primitives
like Bézier tensor-product patches [EBAB07], subdivision
surfaces [ABS∗05], or PN triangles [CK03]. Due to their of-
ten recursive and sequential nature, they are in general not
well suited for full GPU implementation.

In contrast, tessellation pattern meshes for primitives with
a triangular [BS05] or rectangular [GABK05] domain of-
fer good GPU utilization, especially for higher tessellation
degrees. Here, a primitive’s domain is pre-tessellated for a
number of tessellation factor configurations and the resulting
refinement patterns are stored in vertex and index buffers.
At runtime, for each primitive an appropriate pattern is ren-
dered and the provided (u,v) domain coordinates are used in
the vertex shader to derive the actual surface points.

Non-uniform tessellations can either be achieved by re-
sorting to uniform refinement patterns and performing gap
filling [GABK05, SSS06], or by creating non-uniform re-
finement patterns for all tessellation factor configurations
[BS08]. Alternatively, dyadic uniform refinement patterns
can be adapted on-the-fly in the vertex shader by collapsing
vertices on the boundary to yield a semi-uniform tessella-
tion [Tat08b, DRS09].

In a variant for coarse triangle meshes where only some
triangles are refined, Dyken et al. [DRS08] first render all
coarse triangles, degenerating those tagged for refinement.
Then the remaining triangles are rendered with uniform re-
finement patterns, to which a kind of geomorphing is applied
to geometrically achieve continuity across patches. How-
ever, since topologically still multiple inconsistent uniform
tessellations are employed, T-vertices and hence rendering
artifacts can occur.

In principle, tessellation can also be realized using the
geometry shader stage and its amplification capability. Tar-
geting applications with small refinement levels, Lorenz and
Döllner [LD08] employ a geometry shader to emit a precal-
culated refinement pattern for each coarse triangle by copy-
ing it from a vertex buffer.

It is further possible to perform adaptive tessellation
via recursive subdivision. In concurrent work, Patney and
Owens [PO08] present a control-point- and micropolygon-
parallel implementation for Reyes-style (sub)pixel-size tes-
sellation of bicubic Bézier patches. Unfortunately, they only
address the simple parts of the problem and postpone the
challenging and non-obvious ones for future work, most
notably the efficient avoidance/stitching of cracks both be-
tween adjacent sub-patches in the tessellation of a single
Bézier patch and among Bézier patches. Moreover, they first
write to equal-sized buffer slots and then compact the buffer
after each subdivision step whereas we first determine the

actually required slot sizes and then write to contiguous
optimal-sized slots, avoiding any unnecessary copying and
thus saving memory bandwidth.

Older-generation graphics hardware featured some na-
tive support for tessellating selected primitives like Bézier
patches by NVIDIA’s GeForce 3 [Mor01a] or PN triangles
by ATI’s TruForm [ATI01]. In contrast, recent AMD GPUs
like the Xbox 360’s Xenos or the Radeon R600 and R700
[Tat08a] provide a dedicated tessellation unit which supports
a wider range of primitives in a more generic way by basi-
cally emitting refinement patterns. A similar but more gen-
eral and optimized tessellation support will be introduced
by future hardware for the upcoming Direct3D 11 [Gee08],
which adds three more pipeline stages (hull shader, tessella-
tor, and domain shader).

1.2. CUDA

CUDA [NVI08] is a non-graphics API for NVIDIA’s G8x,
G9x and GT200 GPUs that mainly targets compute-intense
data-parallel applications. The provided hardware abstrac-
tion exposes more details about and additional capabilities of
the GPUs than ordinary graphics APIs. In particular, mem-
ory writes are more flexible and data parallelism can be ex-
ploited at different granularities, enabling new applications.

A G8x/G9x/GT200 GPU features several streaming mul-
tiprocessors (SMs) which themselves are composed of eight
scalar processors and 16 KB of shared memory, each. The
processors are able to run multiple threads in a time-sliced
way, with one thread being spawned per vertex, primitive
or fragment in graphics mode, executing the current shader
program. In CUDA, computations are organized in kernels

which are run by a user-specified number of consecutively
enumerated threads. The threads are grouped into blocks

with all threads of a block being executed on the same SM.
Each block is split into warps, groups of 2× 16 threads
which are executed in SIMD fashion. Multiple blocks are
further structured in a grid.

In CUDA each thread can perform uncached reads from
and writes to arbitrary locations in global memory. It is also
possible to perform cached reads by resorting to textures. To
exchange data with an OpenGL context, buffer objects can
be mapped to CUDA’s global memory. On the other hand,
the SM-local shared memory allows for communication be-
tween threads of the same block, and is often employed as
fast data cache where common data is first brought in from
global memory collectively by several threads which then
operate on it.

2. CudaTess framework: General approach

Our CUDA-based CudaTess framework adaptively tessel-
lates all surface primitive instances in a scene, referred to as
patches, in parallel and outputs the resulting triangle meshes
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Figure 1: Overview of the CudaTess framework for adaptive tessellation.

into vertex and index buffers for rendering. While the gen-
eral approach outlined in Fig. 1 is the same for all kinds of
surface primitives, the actual implementation is usually spe-
cific to each kind of primitive.

In the first stage, the tessellation factors are determined
using criteria like distance, screen-space extent, curvature or
influencing silhouette. Depending on the adopted criterion,
the computation is performed either on the level of patches,
edges and boundary curves, or vertices. Each such element

is usually treated independently of other elements. It is also
possible to perform view-frustum or back-face culling at this
stage if patches serve as elements. Affected patches can be
flagged by setting their tessellation factors to zero.

To avoid any cracks in the tessellation, boundary curves
shared by multiple patches must be sampled consistently.
Therefore, we adapt the elements’ tessellation factors ap-
propriately in the next step using both neighborhood infor-
mation provided by the application and the original element
tessellation factors from the first stage. Note that such factor
modifications are usually only required if the elements are
patches.

Once the final tessellation factors have been computed,
we derive the number of vertices and of indices required for
the tessellation of each patch and store them in two arrays.
Subsequently, we run an exclusive parallel scan [SHZO07]
on the arrays to obtain the offsets within the vertex and the
index buffer for the vertex and index data of each patch. To
get the required total buffer sizes, we pad the input arrays
with a zero and then read back the last entry of the scan
results. If necessary, we resize the vertex and index buffer
appropriately.

After that, a patch’s surface is evaluated at sample points
generated on-the-fly according to the tessellation factors.
The resulting vertices are stored sequentially in the patch’s
slot within the vertex buffer (mapped into global memory).
For several kinds of surface primitives, it is advantageous to
employ more than one thread per patch for surface evalua-
tion, e.g. one per xyz component (k = 3 threads). In partic-
ular, loading control points to fast shared memory becomes

effective, the register count stays lower (enabling surfaces of
rather high degrees) and memory writes are more coherent
within a warp. Finally, the index buffer data is written for
each patch, thus creating the topology of its tessellation.

The resulting buffers can then be used directly for render-
ing. Usually, the vertex data features an object id which al-
lows for selecting object-local shading options analogously
to instanced rendering. In case of multi-pass rendering, the
buffer data can readily be reused without having to reevalu-
ate the patch surfaces.

Since an explicit representation of the tessellation result
is available, it is also possible to post-process it before ren-
dering. For instance, assume only tessellations correspond-
ing to dyadic subdivision are performed and geomorphing
is desired. Then the initial surface evaluation can be done
completely at the finest involved subdivision level. In a post-
process on the vertex buffer, the vertices to be morphed are
adapted. They easily get their coarser-level positions by in-
terpolating between their adjacent vertices, which can read-
ily be accessed, thus avoiding many redundant computa-
tions. As another example, it is possible to use neighbor-
hood information to copy generated vertex position data for
boundary curves across adjacent patches, ensuring absolute
crack-freeness irrespective of numerical inaccuracies. Note
that even in case control points and sampling parameters are
consistent among patches, the numerical results may slightly
differ if the involved parameterization directions differ and
hence mathematically equivalent terms are evaluated in a
different order. Also note that this problem affects all tes-
sellation approaches which treat each patch individually, in-
cluding refinement patterns and AMD’s tessellation units. It
can also be alleviated by reorganizing the evaluation in a
parameterization-direction-independent way [Cas08], which
however usually entails an increased arithmetic operation
count.

To provide more insight into the actual realization as well
as the flexibility of the framework, we describe two concrete
examples in the following sections which were chosen to of-
ten differ significantly in the single steps.
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Figure 2: Control net of a bicubic Bézier patch.

3. Bicubic rational Bézier patches

As our first example, we consider bicubic rational Bézier
tensor-product patches [Far02]. A patch (cf. Fig. 2) is com-
pletely specified by 16 homogeneous 4D control points bi j =
(wi jpi j,wi j), i, j = 0, . . . ,3, composed of 3D points pi j and
associated weights wi j. The patch surface is given by

p(u,v) =

(

b(u,v)
)

xyz
(

b(u,v)
)

w

=
∑

3
i=0 ∑

3
j=0 wi jpi j B

3
i (u)B

3
j(v)

∑
3
i=0 ∑

3
j=0 wi j B

3
i (u)B

3
j(v)

,

where Bn
i (t) =

(

n
i

)

t i(1− t)n−i are the Bernstein polynomi-
als. To get the (unnormalized) normal ñ(u,v) = tu(u,v)×
tv(u,v), we first compute the tangent in u direction

tu(u,v) =

(

bu(u,v)
)

xyz
−

(

bu(u,v)
)

w
p(u,v)

(

b(u,v)
)

w

,

making use of the 4D derivative

bu(u,v) = 3∑
2
i=0 ∑

3
j=0

(

bi+1, j −bi, j

)

B
2
i (u)B

3
j(v);

tv(u,v) is then obtained analogously from bv(u,v).

Overview For adaptive tessellation, the control points are
provided in an array. Our CudaTess implementation then de-
rives a bounding box for each patch’s control points and per-
forms view-frustum culling. If a patch doesn’t get culled,
tessellation factors in u and v direction are computed. Tak-
ing neighborhood information into account, we then derive
consistent tessellation factors for the four boundary curves
of each patch. Based on these factors, patch-wise vertex and
index counts are determined, and then buffer offsets are de-
rived. Finally, the actual tessellation is performed by gener-
ating vertex and index buffer data.

Tessellation factors Consider a patch’s uniform tessellation
l(u,v) over the domain U = [0,1]2 ∋ (u,v) with tessellation
factors m and n in u and v direction, respectively; i.e. the
samples p(iδu, jδv), 0 ≤ i ≤ m, 0 ≤ j ≤ n, δu = 1/m, δv =
1/n are used. According to Zheng and Sederberg [ZS00],
the approximation error supU ‖p(u,v)− l(u,v)‖ ≤ ε if the
domain step sizes δu and δv have been chosen such that

Duuδ
2
u +2Duvδuδv +Dvvδ

2
v ≤ 8ε mini j{wi j}
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Figure 3: Quad tessellation patterns: completely uniform

(left), with one (center) or two transition regions (right).

holds, where

Duu = 6 max
i=0,1

j=0,...,3

{∥

∥

(

bi+2, j −2bi+1, j +bi, j

)

xyz

∥

∥

+(r− ε)
∣

∣wi+2, j −2wi+1, j +wi, j

∣

∣

}

and similarly Duv and Dvv are bounds on the second deriva-
tives, with r = maxi j ‖pi j‖.

For each patch, we therefore first derive ε from a user-
specified screen-space error bound and then determine r,
mini j{wi j}, Duu, Duv and Dvv. Note that the last three quan-
tities depend on ε and hence cannot be precomputed. Next,
we derive step sizes δu and δv [ZS00] and the corresponding
tessellation factors. For each patch, we finally store one tes-
sellation factor per boundary curve. To avoid cracks among
two adjacent patches, we always take the maximum of the
two involved patches’ tessellation factors.

Tessellation pattern In general three different classes of
tessellation factor configurations can arise (cf. Fig. 3). If the
two tessellation factors in u direction (for p(u,0) and p(u,1))
are equal as well as those in v direction, the patch is tessel-
lated uniformly. Otherwise, the tessellation is composed of a
uniform core and one or two transition regions where corre-
sponding tessellation factors vary. Each factor for the interior
part is always derived from the minimum of the two tessel-
lation factors for the same direction, which by construction
provides an upper bound on the required sampling density.

Each transition region is tessellated by a Bresenham-like
approach [Mor01b], yielding well-shaped triangles in do-
main space. A state variable Q is initialized to the difference
of the two tessellation factors and subsequently updated. Its
sign controls from which of the two involved transition sides
the next segment is picked for creating a triangle.

Vertex data update We distribute the vertex data genera-
tion for each patch across four consecutive threads, one for
each component (x, y, z, w). Note that a patch’s threads be-
long to the same warp and hence run in lockstep and can eas-
ily communicate via shared memory. First, the control points
are collectively loaded to shared memory. Then vertex data is
successively determined according to the tessellation pattern
implied by the tessellation factors, and written to the vertex
buffer. Each thread first evaluates its component of b(u,v),
bu(u,v) and bv(u,v). Then a patch’s first three threads com-
pute the position p(u,v) and normal ñ(u,v), with required
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Figure 4: Cubic triangular Bézier patch: control net (left)

and parametric domain (right).

quantities like
(

b(u,v)
)

w
being exchanged via shared mem-

ory. In addition, for each vertex, we emit (u,v) coordinates
and an object id obtained from a texture.

Thanks to performing surface evaluation patch-wise and
thus processing a single patch’s vertices sequentially instead
of in parallel, we are able to employ techniques reusing re-
sults from computations carried out for previous vertices. We
exemplarily adopted forward differencing [Wal90], which
reduces the evaluation of b(u,v), bu(u,v) and bv(u,v) to a
small number of additions for all vertices with the same v

(or u) coordinate but the first.

4. PN triangles

For our second example, we applied the CudaTess frame-
work to PN triangles [VPBM01]. Recall that a PN triangle
features a geometric component described by a cubic trian-
gular Bézier patch (cf. Fig. 4)

b(u,v) = ∑
i+ j+k=3

bi jk
3!

i! j!k!
u

i
v

j(1−u− v)k

as well as a normal field used for shading which is speci-
fied by a quadratic Bézier triangle n(u,v) with control points
ni jk. All control points bi jk and ni jk are constructed from a
given coarse triangle with vertex positions Pℓ and normals
Nℓ, ℓ = 1,2,3. In particular, b300 = P1, n200 = N1, etc.

Overview A collection of coarse triangle meshes is pro-
vided as input for adaptive tessellation. For each correspond-
ing PN triangle, we first derive the control points bi jk as well
as their bounding box and test it against the viewing frustum.
If the patch is potentially visible, we further determine its
normal field control points ni jk and store them along with the
bi jk for the vertex data generation stage, before finally com-
puting the tessellation factors along the patch’s three bound-
ary curves. Next, we utilize adjacency information for the
input triangles to make the factors consistent across patches.
After determining the number of vertices and indices re-
quired for tessellating each PN triangle, buffer offsets are
computed. In a last step, the actual vertex and index buffer
data is generated, yielding the final tessellation.
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Figure 5: Triangle tessellation patterns: completely uniform

(left), with one (center) or two transition regions (right).

Tessellation factors According to Filip et al. [FMM86], the
error of approximating a C2 surface f by a flat triangle l over
the domain triangle T = △

(

(u0,v0);(u0 + δu,v0);(u0,v0 +
δv)

)

is bounded by

supT ‖f(u,v)− l(u,v)‖ ≤ 1
8

(

Duuδ
2
u +2Duvδuδv +Dvvδ

2
v

)

where

Duv = sup
T

∥

∥

∥

∥

∂2f(u,v)

∂u∂v

∥

∥

∥

∥

,

Duu = sup
T

∥

∥

∥

∥

∂2f(u,v)

∂u2

∥

∥

∥

∥

, Dvv = sup
T

∥

∥

∥

∥

∂2f(u,v)

∂v2

∥

∥

∥

∥

.

Applied to our triangular setting with the domain directions

d01 = (−1,1), d12 = (0,−1), d20 = (1,0),

and using the identity 2δuδv ≤ δ2
u +δ2

v , we get

1
8

(

max
{

supT

∥

∥D
1,1
d01,d20

b(u,v)
∥

∥,supT

∥

∥D
1,1
d01,d12

b(u,v)
∥

∥

}

+ supT

∥

∥D
2
d01

b(u,v)
∥

∥

)

δ
2
d01

≤ 1
2 ε

for the step size δd01 in direction d01 and a given error bound
ε. D2

d01
b(u,v) denotes a second and D1,1

d01,d20
b(u,v) a mixed

directional derivative of b(u,v) [Far02]. Since these deriva-
tives are themselves (linear) Bézier triangles, their magni-
tudes can easily be bounded by utilizing the magnitudes of
the corresponding control points. Analogous relationships
hold for the other two step sizes δd12 and δd20 .

For each PN triangle we first derive the bounds on the
directional derivatives required for determining the step
sizes. In principle, they can be precomputed if the coarse
base triangles are only subjected to rigid transformations.
Next, we compute the ε value corresponding to a user-
specified screen-space error bound, and derive the three step
sizes δd01 , δd12 , δd20 such that the error bound is satisfied.
From these the corresponding tessellation factors for the
patch’s boundary curves are determined and stored. Finally,
to obtain consistent tessellation factors among neighboring
PN triangles, we again take the maximum of the involved
patches’ factors.

Tessellation pattern Each PN triangle’s tessellation con-
sists of a uniformly tessellated part and, if its tessellation
factors differ, one or two additional transition regions (cf.
Fig. 5). The tessellation factor for the uniform part is derived
from the maximum of all three boundary curve factors. Like
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(a) Tea table (b) Killeroo (c) Killeroo herd (d) Spheres

Figure 6: Example scenes composed of adaptively tessellated bicubic rational Bézier patches.
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Tea table 332 41372 25798 55316 206.5 Hz 260.6 Hz 758 Hz 0.39 ms 0.09 ms 2.40 ms 1.40 ms 0.56 ms
Killeroo 11532 100930 110515 213709 156.2 Hz 194.2 Hz 706 Hz 0.82 ms 0.16 ms 3.32 ms 2.04 ms 0.61 ms
Killeroo herd 92256 345751 514753 827389 48.1 Hz 62.6 Hz 366 Hz 4.18 ms 0.42 ms 12.22 ms 7.38 ms 1.19 ms
Spheres 32000 402000 393600 675600 98.4 Hz 108.8 Hz 362 Hz 1.62 ms 0.20 ms 4.54 ms 3.54 ms 0.96 ms
Spheres (close-up) 32000 272301 216925 391401 92.8 Hz 123.1 Hz 320 Hz 1.04 ms 0.19 ms 5.54 ms 2.92 ms 0.77 ms

Table 1: Bézier patches: scene statistics, rendering performance and tessellation time break-down for some example scenes.

in the quad case, for each transition region, a Bresenham-
like algorithm is executed with the tessellation factors of the
interior uniform part and of the boundary curve as input.
However, in case two transition regions occur, we apply a
small modification to get triangles of better shape in domain
space: The algorithm is run starting from where the transi-
tion regions meet with the tessellation factor of the interior
part increased by one but skipping the first generated triangle
(which always gets constructed from the first (only virtual)
segment of the virtually extended interior part’s boundary).

Vertex data update For each patch, the vertex data gener-
ation is distributed across three consecutive threads, one for
each component. At first, the control points corresponding
to the vertex positions and normals of the underlying coarse
triangle are collectively loaded to shared memory. If all tes-
sellation factors equal one, the coarse triangle is not refined
and we just output the corresponding vertex data. Otherwise,
the remaining control points are brought into shared memory
and vertex data is successively computed according to the
tessellation pattern and written to the mapped vertex buffer.
In addition to evaluating the position b(u,v) and the normal
n(u,v), we also output (u,v) coordinates and an object id.

5. Results and discussion

All results were obtained on a Pentium IV 3 GHz with an
NVIDIA GeForce 8800 GTS (G80) video card at a viewport
of 1024×768 and a screen-space error bound of 0.5 pixels.

Bicubic rational Bézier patches Some example scenes to
which we applied our implementation are shown in Figs. 6
and 8. As listed in Table 1, we achieve real-time performance
even for large numbers of patches to tessellate. Note that in
case of the close-up view of the spheres scene (Fig. 8), only
those patches get actually tessellated which pass the view-
frustum test. Also recall that the adaptive tessellation is gen-
erated from scratch each frame, requiring only the patches’
control points and their neighborhood relationships as in-
put. Consequently, both the view-point and the patch control
points can be freely animated without negatively affecting
the tessellation performance. Since CudaTess outputs a ver-
tex buffer and an index buffer, the data can be reused for
multi-pass rendering without necessitating any recomputa-
tions, enabling even higher frame rates.

As the time break-down shows, generating the vertex data
and hence evaluating the surface is the most dominating part.
Even if all tessellation factors are low, like in the spheres
scene, this costly computation can be sped up significantly
via forward differencing. In scenes with a large number of
visible patches, like the Killeroo herd scene, determining
tessellation factors also consumes a significant share of time,
mainly because of having to compute the bounds Duu, Duv,
and Dvv. Note that these two most time-demanding stages
are required by all on-the-fly tessellation approaches.

PN triangles Example scenes are depicted in Figs. 7 and 9,
covering a wide range of both coarse triangle counts and
generated tessellation triangle counts. As shown in Table 2,
even large tessellation loads can be coped with in real-time.
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(a) Elephant (b) Star field (c) Star field (close-up) (d) Model zoo

Figure 7: Example scenes composed of triangle meshes adaptively refined according to the PN triangle scheme.

Scene
Base

triangles Triangles Vertices Indices A
da

pt
iv

e
te

ss
el

la
ti

on

A
da

pt
iv

e
te

ss
el

la
ti

on
us

in
g

pr
e-

co
m

pu
te

d
da

ta

O
nl

y
sh

ad
in

g
(r

eu
si

ng
bu

ff
er

da
ta

)

Te
ss

el
la

ti
on

fa
ct

or
s

Te
ss

el
la

ti
on

fa
ct

or
s

us
in

g
pr

e-
co

m
pu

te
d

da
ta

F
in

al
fa

ct
or

s
&

bu
ff

er
of

fs
et

s

V
er

te
x

bu
ff

er
da

ta
up

da
te

In
de

x
bu

ff
er

da
ta

up
da

te

Double torus 1536 15320 16048 43328 408 Hz 409 Hz 1413 Hz 0.39 ms 0.35 ms 0.21 ms 0.60 ms 0.48 ms
Elephant 21540 79208 116399 257894 230 Hz 259 Hz 1076 Hz 0.91 ms 0.43 ms 0.26 ms 1.49 ms 0.68 ms
Star field 41496 1050688 864928 2547040 60.1 Hz 63.6 Hz 186 Hz 1.41 ms 0.47 ms 0.33 ms 6.81 ms 2.57 ms
Star field (close-up) 41496 379982 249385 692306 118 Hz 122 Hz 301 Hz 0.75 ms 0.45 ms 0.30 ms 2.84 ms 1.11 ms
Model zoo 80578 160200 311469 548730 109 Hz 135 Hz 524 Hz 2.42 ms 0.65 ms 0.50 ms 3.33 ms 0.93 ms

Table 2: PN triangles: scene statistics, rendering performance and tessellation time break-down for some example scenes.

Figure 8: Close-up view of the spheres scene from Fig. 6 d:

adaptive tessellation (top) and rendering result (bottom).

Both the PN triangles’ control points as well as the adaptive
tessellation are derived anew each frame, thus freely sup-
porting animations. Again, computing the vertex data is the
most time-consuming part. Note that the kernel for deriv-
ing tessellation factors can be stream-lined in case of static
scenes by precomputing the control points, their bounding
box and the bounds on the directional derivatives, yielding a
measurable speed-up for complex scenes.

Limitations While adopting a patch as unit of parallelism
is crucial for efficient GPU-guided generation of varying
amounts of geometry, and enables acceleration techniques

like forward differencing, it may prevent utmost utilization
of the GPU’s processors. First, since each patch is processed
by one single thread (or a small number of threads), the num-
ber of patches must be reasonably high to not leave pro-
cessors completely idle. Nevertheless, as the tea table scene
demonstrates, even smaller patch counts with high tessella-
tion rates are handled very well. Second, threads within a
warp may diverge and finish at different times if the tessel-
lation patterns of the warp’s patches differ, which impacts
the effective parallelism. However, even when manually im-
posing a kind of worst-case workload, we only observed a
reasonably low reduction in throughput compared to a best
case for SIMD parallelism.

Since CudaTess requires the tessellation to be stored in
a vertex and an index buffer, it may consume a noticeable
amount of memory. Especially in case of a large number of
patches being excessively tessellated, one hence may con-
sider applying CudaTess sequentially to subsets of the scene.
On the other hand, only the explicit availability of the tes-
sellation result enables post-processing of the vertex data as
well as fast buffer reuse for multi-pass rendering.

Driver dependency All reported performance data was ob-
tained with ForceWare 175.19 under Windows XP. However,
during our tests we observed that the employed driver ver-
sion often measurably impacts performance. For instance,
compared to the listed frame rates, a different driver resulted
in a 25% performance gain for the Killeroo herd scene. An-
other driver showed only small performance impacts of us-
ing forward differencing. Moreover, the alternative approach
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Figure 9: Double torus: PN triangle surface with its base

triangle mesh (top), and close-up (bottom).

of instanced rendering of refinement patterns [BS08] was up
to four times slower on a recent CUDA-specific driver than
the figures reported below.

Geometry shader We note that, in principle, a patch-
wise approach could also be pursued utilizing the geom-
etry shader stage. However, we don’t consider this worth-
while due to several severe restrictions faced. For instance,
the shader’s output is basically a vertex list, requiring inte-
rior vertices (with all their attributes) to be emitted at least
twice. Also, a geometry shader can output at most 1024 float
values per input primitive, limiting the maximum tessella-
tion factors, e.g. to 12 for a triangular domain if just posi-
tions and normals are emitted. Even worse, in practice, the
shader output must be restricted to far less than the possible
1024 values to avoid severe performance drops. Although
this limitation may be alleviated by a multi-pass approach,
overall performance will be negatively affected by the over-
head entailed. Furthermore, available performance data for
approaches employing a geometry shader for outputting a
tessellation pattern [DRS09,LD08] suggest that even in case
of small tessellation factors, alternative approaches like ren-
dering refinement patterns [BS08] perform significantly bet-
ter.

Comparison to refinement patterns Rendering a refine-
ment pattern for each input patch [BS08] excels in case of
extremely high tessellation degrees, even for small patch
counts. On the other hand, such setups are not encountered
in a large class of scenes. For a first comparison at more
common tessellation degrees, we picked the spheres scene,
selecting identical tessellation factors for all patches. Note
that consequently only a single refinement pattern is utilized
and instancing can be employed to limit API overhead to just
one draw call. As the performance data in Fig. 10 shows,
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Figure 10: Rendering performance comparison between

(instanced) refinement patterns [BS05] and CudaTess for the

spheres scene (Fig. 6 d) with uniformly tessellated patches.

our CudaTess implementation, which simplifies to generat-
ing vertex and index buffer data, turns out to be faster. In
particular, when only regenerating the vertex data and us-
ing a precomputed index buffer, our superior surface evalua-
tion performance becomes obvious. We attribute this mainly
to caching the control points in shared memory. A further
speed-up would be possible if forward differencing were em-
ployed.

For a second comparison, we rendered all our example
scenes with the refinement pattern approach. In a prepara-
tion step, we determined the tessellation factors and gener-
ated just the actually required refinement patterns. The frame
rates listed in Table 3 show that in case of traditional “im-
mediate” rendering [BS08], where for each (visible) patch
the corresponding pattern is rendered with an own draw call,
CudaTess is significantly faster. The only exception is the tea
table scene with its small number of patches and hence lim-
ited potential for high GPU utilization with a patch-parallel
approach like CudaTess. On the other hand, the encountered
high tessellation rates make this scene an ideal case for the
refinement pattern technique.

The “immediate” rendering of refinement patterns incurs
a high API invocation overhead, which clearly dominates for
smaller tessellation factors. This can be alleviated by batch-
ing together all patches using the same refinement pattern
and employing instancing for rendering. As indicated in Ta-
ble 3, for more complex scenes, the performance improves
significantly. Nevertheless, our CudaTess implementation is
still clearly faster for scenes composed of many bicubic
rational Bézier patches. In case of PN triangles, however,
batched rendering of refinement patterns appears to be often
faster than CudaTess. One main reason for this difference is
that the evaluation of PN triangles is cheaper than that of
Bézier patches. Moreover, note that for the timings we built
the batches, and rearranged and uploaded the control points
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Refinement patterns CudaTess

Integer tessellation Dyadic tessellation Semi-uniform tessellation Fwd.
Scene #P #T Immed. Batched #P #T Immed. Batched #P #T Immed. Batched diff.
Tea table 81 41372 595 Hz 365 Hz 26 80808 515 Hz 262 Hz 5 237664 303 Hz 51.0 Hz 213 Hz 271 Hz
Killeroo 179 100930 43.7 Hz 146 Hz 70 125396 43.8 Hz 133 Hz 4 226518 41.2 Hz 40.7 Hz 173 Hz 225 Hz
Killeroo herd 109 345751 5.6 Hz 31.8 Hz 74 357110 5.6 Hz 31.5 Hz 4 568326 5.1 Hz 10.4 Hz 59.7 Hz 84.3 Hz
Spheres 7 402000 15.6 Hz 49.1 Hz 7 586400 15.7 Hz 37.8 Hz 2 774400 14.8 Hz 13.6 Hz 111 Hz 124 Hz
Spheres (close-up) 54 272301 49.4 Hz 86.1 Hz 13 406200 49.4 Hz 62.7 Hz 3 457472 46.3 Hz 26.0 Hz 102 Hz 139 Hz
Double torus 23 15320 307 Hz 979 Hz 11 23660 307 Hz 977 Hz 3 25104 285 Hz 979 Hz 431 Hz
Elephant 65 79206 24.8 Hz 303 Hz 31 102542 24.6 Hz 305 Hz 4 119226 22.9 Hz 310 Hz 286 Hz
Star field 4 1050688 13.0 Hz 110 Hz 3 2410336 12.9 Hz 60.3 Hz 2 2540544 12.0 Hz 54.9 Hz 69.5 Hz
Star field (close-up) 57 379982 102 Hz 180 Hz 7 777472 99.8 Hz 124 Hz 3 792320 92.1 Hz 118 Hz 131 Hz
Model zoo 74 160200 6.6 Hz 86.3 Hz 35 198540 6.6 Hz 85.9 Hz 5 224263 6.1 Hz 86.2 Hz 156 Hz

Table 3: Performance comparison between various approaches for rendering refinement patterns [BS08, Tat08b, DRS09] and

CudaTess. The determination of tessellation factors as well as preparations for instanced rendering are not included in the

timings. (#P: number of different patterns used; #T: number of rendered triangles; Immed.: one draw call per patch; Batched:

one draw call per pattern)

for instanced rendering during the preparation step. In prac-
tice, this must be done during runtime and can reasonably
be expected to consume some amount of time, thus reducing
the achievable frame rate. Also note that while CudaTess al-
lows reusing buffer data in case of multi-pass rendering, the
refinement pattern approach necessitates a complete rerun,
which is always slower. Using transform feedback is not re-
ally a viable option because only a triangle soup is recorded,
causing valence-n vertices to be stored n times and thus also
necessitating a huge buffer.

Recall that refinement patterns need to be precomputed
and stored in vertex and index buffers. However, the number
of patterns can easily explode, especially for quad domains.
For example, creating quad refinement patterns for all con-
figurations of tessellation factors up to 32 results in almost
1 GB of 16-bit index buffer data. Remember that for our
timings, we circumvented this issue by only creating the re-
finement patterns actually used for one specific viewpoint,
which is not feasible in the general setting. Consequently, it
is questionable whether providing patterns for all combina-
tions of integer tessellation factors is reasonable or possible
in practice.

One option is to restrict tessellation factors to power-of-
two values, leading to a dyadic tessellation. However, as in-
dicated by the data in Table 3, compared to ordinary integer
tessellation this can incur significant evaluation overhead.
Tessellating a triangular domain with a factor of 32 instead
of 17, for instance, results in 228% more vertices. Adopt-
ing a semi-uniform tessellation [Tat08b,DRS09] where only
dyadic uniform refinement patterns are used further de-
creases the pattern count but also increases the evaluation
overhead. Yet another option is to decompose each refine-
ment pattern into patterns for the uniformly tessellated core
and the transition regions. But this further increases the num-
ber of draw calls and also leads to redundant evaluations. On
the other hand, CudaTess can efficiently deal with any tes-

sellation factor configuration since it constructs tessellation
patterns on-the-fly.

6. Conclusion and future work

We have presented CudaTess, a novel and flexible frame-
work for the crack-free adaptive tessellation of surfaces.
Utilizing CUDA, the tessellation task is parallelized on the
patch level. All major steps like deriving consistent tessella-
tion factors, evaluating the surface at vertices, and generat-
ing index data according to the tessellation topology are ex-
ecuted completely on the GPU. In particular, we have shown
how to successfully employ CUDA for the efficient and
purely GPU-based dynamic generation of geometry without
requiring any CPU assistance except invoking a few kernels.

We have demonstrated CudaTess with two concrete exam-
ples, rational Bézier patches and PN triangles. In both cases,
even large collections of patches are adaptively tessellated
on-the-fly in real-time. Compared to other approaches like
rendering refinement patterns, CudaTess excels especially
when the surface evaluation is rather expensive. Then, tech-
niques made possible by our patch-parallel approach, like
caching control points in shared memory or forward dif-
ferencing, can make a significant impact on performance.
Therefore, we reckon that in such cases our technique is
competitive even against using a dedicated tessellation unit
that outputs (u,v) domain coordinates.

For future work, it would be interesting to port CudaTess
to CAL/Brook+ [AMD08] or to the upcoming Direct3D 11
with its compute shaders [Boy08] and compare the perfor-
mance against utilizing a dedicated tessellation unit. Further-
more, we believe that our approach is well suited for future
hardware architectures like Larrabee [SCS∗08] with their in-
creased flexibility and programmability, and we would like
to eventually adapt CudaTess to them.

Another avenue of future work is applying CudaTess
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to rendering subdivision surfaces using recently developed
Bézier approximations [LS08, MNP08]. The necessary on-
the-fly conversion into Bézier patches could be incorporated
analogously to how we currently derive a PN triangle’s con-
trol points.
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