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We introduce a framework to generate many variations of a facade design
that look similar to a given facade layout. Starting from an input image, the
facade is hierarchically segmented and labeled with a collection of manual
and automatic tools. The user can then model constraints that should be
maintained in any variation of the input facade design. Subsequently, facade
variations are generated for different facade sizes, where multiple variations
can be produced for a certain size. Computing such new facade variations
has many unique challenges, and we propose a new algorithm based on
interleaving heuristic search and quadratic programming. In contrast to most
previous work, we focus on the generation of new design variations and not
on the automatic analysis of the input’s structure. Adding a modeling step
with the user in the loop ensures that our results routinely are of high quality.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling

General Terms: Algorithms

Additional Key Words and Phrases: Procedural modeling, facade modeling,
design variations

ACM Reference Format:
Bao, F., Schwarz, M., and Wonka, P. 2013. Procedural facade variations
from a single layout. ACM Trans. Graph. 32, 1, Article 8 (January 2013),
13 pages.
DOI = 10.1145/2421636.2421644
http://doi.acm.org/10.1145/2421636.2421644

This research was partially funded by the National Science Foundation.
M. Schwarz was supported in part by a DAAD postdoctoral fellowship.
c⃝ ACM, 2013. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in ACM Transactions on Graphics, 32, 1
(January 2013). http://doi.acm.org/10.1145/2421636.2421644

1. INTRODUCTION

Procedural modeling is a useful tool to create large amounts of de-
tailed content. The design process often starts with an image or a
drawing of one (or multiple) example(s), and then a grammar is writ-
ten in textual form to reconstruct one specific input. Afterwards, the
grammar is generalized by adding random variations [Watson et al.
2008]. This is one of the successful strategies to model plants using
L-systems [Prusinkiewicz and Lindenmayer 1990] or buildings us-
ing shape grammars [Müller et al. 2006]. The visual quality of the
output and the flexibility of this approach are definite advantages,
but the modeling time is often high. This is especially true if differ-
ent parts of an output model need to communicate and coordinate
design choices, as seemingly tiny additions to a design or the speci-
fication of constraints may necessitate a significant modification of
existing rules and writing of new ones.

An alternative strategy is to infer a grammar directly from a single
input object, given in the form of images [Aliaga et al. 2007; Müller
et al. 2007] or geometry [Št’ava et al. 2010; Bokeloh et al. 2010]. All
these previous approaches have in common that they spend most of
their effort on image and geometry analysis to understand the struc-
ture of the input, with symmetry detection being a major technical
ingredient. The main obstacle that we observed is that the structure
present in facade layouts is surprisingly complex, and judging what
aspects of a layout are important and should be preserved is often
subjective. Therefore, it is not surprising that central aspects like
alignment (refer to Figure 1) are not captured by grammars like the
ones produced in recent work [Št’ava et al. 2010; Bokeloh et al.
2010]. While these papers showed promising results, we pursue a
different approach to be able to handle challenging layouts.

Our strategy is to combine a semi-automatic solution for structure
analysis and an automatic solution for the computation of design
variations. First, a user can generate a facade layout from a single
image, using semi-automatic tools for hierarchical segmentation and
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Fig. 1. Examples of interesting alignments present in facade layouts. (a) An
alternating sequence of elements ABABA is aligned with a sequence of a
single element (C) below. (b) Single elements can be aligned with other
single elements (A and C), and multiple smaller elements (A) can be aligned
with one larger element (D). (c) Alignments exist between elements of
different sizes, and different types of alignment occur; e.g., the centers of
the elements E are alternatingly aligned to the left or right of elements G.
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labeling, and assign further attributes like depth to facade elements.
The second step consists of the user specifying important relation-
ships in the input layout that should be preserved. Third, design
variations are automatically computed by a combination of heuristic
search and quadratic programming.

The main contributions of this modeling approach are the follow-
ing:

—Complementing existing automatic algorithms, we propose a
framework that comprises layout modeling from a single input
and constrained optimization to compute new design variations.
These outputs are of high quality, and while this comes at the cost
of additional modeling time, it is essential for most applications
in industry.

—Compared to grammar-based modeling, we simplify the modeling
process, and we can specify facade layout variations that cannot
easily be encoded with existing shape grammars.

The proposed design philosophy of semi-automatic structure analy-
sis and automatic design computation may also lead to interesting
work in other areas.

2. RELATED WORK

One popular approach for procedural modeling is to model objects
using grammars, such as L-systems [Prusinkiewicz and Linden-
mayer 1990] or shape grammars [Müller et al. 2006]. There are
various extensions to add additional control to a grammar, such
as the ability of a grammar to interact with user defined shapes
[Prusinkiewicz et al. 1994; Prusinkiewicz et al. 2001; Beneš et al.
2011; Talton et al. 2011]. While grammars typically have to be writ-
ten in a text editor, Lipp et al. [2008] provide ideas how to specify
grammars and modify designs with a graphical user interface. In all
these approaches, the initial grammar still has to be designed by the
user.

A natural question is how to automate this design process. Given
a segmented input design as vector graphics, symmetry detection
can be used to identify a hierarchical structure in the input and to
establish rules that can replicate the input [Št’ava et al. 2010]. If
the input is an image, symmetry detection and segmentation are
significantly more challenging. Therefore, the existing solutions to
extract grammars from facade images [Aliaga et al. 2007; Müller
et al. 2007] spend most effort on image analysis but not as much on
structure analysis. As a result, current approaches only work well
for selected facades. Another line of recent work deals with general
meshes and point clouds as input [Bokeloh et al. 2010].

In general, grammars have known advantages and disadvantages.
The visual quality of the output is typically very high and the ex-
amples can be complex. The disadvantages are the high modeling
times and the required training in programming or scripting. A ma-
jor challenge is the coordination among different parts of a design
(as shown in the Introduction). We do, however, build on the idea
of split operations [Wonka et al. 2003; Müller et al. 2006] used
in grammar-based facade modeling, because most facades can be
subdivided by splitting rules.

Synthesizing a larger region from a smaller input region has been
heavily investigated for textures [Wei et al. 2009], and these meth-
ods can also be nicely adapted to architectural geometry [Merrell
2007; Merrell and Manocha 2008]. The most closely related texture
synthesis algorithm specializes in facade textures [Lefebvre et al.
2010], and we will compare our results to this work. The regenera-
tion of facade textures can be controlled by a resizing operation on
architectural meshes [Cabral et al. 2009].

(a) Input (b) Segmentation

(c) Example variations

Fig. 2. Our framework can generate many variations of a facade design that
look similar to a given input facade layout. Starting from an input facade
image (a), we semi-automatically create a hierarchical segmentation (b) and
model the essential aspects of the layout by specifying important constraints
in a user interface. Our relayouting algorithm can then automatically generate
many layout variations (c). Due to the semi-automatic modeling step, our
procedural variations are all of high visual and structural quality.

Several recent methods in architectural modeling consider an-
notated examples as input. Impressive results have been recently
demonstrated for the problem of floorplan generation [Merrell et al.
2010] and for furniture layout [Merrell et al. 2011; Yu et al. 2011].

Independently of our work, Lin et al. [2011] recently proposed a
solution for retargeting a given 3D architectural model to new sizes;
we provide a comparison with our approach in Section 9.2.

3. OVERVIEW

Our framework has three major components (refer to Figure 2):

Hierarchical segmentation. We take an approximately or-
thorectified facade image as input and adopt a semi-automatic ap-
proach [Musialski et al. 2012] to segment it into a hierarchy of
rectangular regions. At this stage, we also provide region labels and
approximate depth (Section 4).

Layout modeling. The hierarchical segmentation is further pro-
cessed by the user to define important aspects of the layout. This
step requires higher-level semantic knowledge of the input and,
therefore, is also done in a semi-automatic fashion. The user has
the ability to specify multiple types of hard and soft constraints
that are considered essential to the layout: region-size, frequency,
sequence, instance, alignment, same-size, and symmetry constraints
(Section 5).

Relayouting. The relayouting algorithm can generate a varia-
tion of the input layout for a given target facade size. Layout mod-
eling typically results in a larger number of constraints, and even
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Fig. 3. Beginning with a facade orthoimage as input, our semi-automatic approach performs a hierarchical segmentation. Each resulting subregion is assigned
a symbol. (For visual clarity, (c) only shows the subregions of first-level regions B and J.)

finding a single layout that satisfies all hard constraints is difficult.
Hence, we propose an optimization algorithm that uses a combina-
tion of heuristic search and quadratic programming (Section 7).

To evaluate the framework, we show selected facade variations
in Section 8. Moreover, we discuss extensions and provide compar-
isons to existing solutions (Section 9).

4. HIERARCHICAL SEGMENTATION

To obtain a 2.5D geometric representation of the rectified input fa-
cade image that makes it amenable for relayouting, we first perform
a hierarchical segmentation, adopting the recent, semi-automatic
approach of Musialski et al. [2012]. Starting with an initial re-
gion (a rectangular, axis-aligned area on the facade) that covers the
whole input facade, one or more splitting lines of identical direction
(horizontal or vertical) that partition the region into self-contained
subregions (like floors) are determined. These resulting regions are
then split recursively, typically alternating the direction of the split-
ting lines, until no further splitting lines can be found, ultimately
yielding a tree-based hierarchy of regions that segments the input
facade (see Figure 3 for an example). A region at the finest level is
called terminal and corresponds to a leaf node, whereas a composite
region consists of and is completely covered by non-overlapping
subregions that are either vertically or horizontally arranged.

Generally, splitting lines are chosen according to automatically
detected dominant edge features, but as these are not always yielding
the decomposition desirable for layout modeling, the user can inter-
actively edit the segmentation. To this end, operations like overriding
the automatically inferred splitting direction, adding and removing
splitting lines, freely moving a splitting line, or snapping it to an
existing splitting line or a detected edge are offered.

For effective relayouting, it is necessary that regions that are
supposed to be identically sized in the input actually have the same
size in the segmentation; the same holds true for mutual alignments.
As factors like noise and imperfect rectification may easily preclude
this objective, the user can specify which regions must have the same
size and which regions should be aligned; our system then adapts the
splitting lines appropriately such that these constraints are met. The
user may also indicate that two regions are identical, thus enforcing
not only a consistent size but also an identical decomposition.

To enable referencing individual regions during the layout mod-
eling, the subregions within a composite region are sequentially
assigned a symbol (which we denote by a letter), where two subre-
gions that have been marked identical share the same symbol.

Furthermore, each region can be assigned one or more semantic
labels by the user, like Window or Door. During modeling, this
allows to refer to sets of regions with identical function by using the
according label. In our interface, the user first selects one or more
regions, where advanced operations, like expanding the selection
to include all identical regions or all regions of similar color, are
offered. He then can choose from a collection of predefined labels or
define a new one and assign it to the selected regions. A region’s ma-
terial and depth constitute two further attributes that can be assigned
and modified analogously to labels.

5. LAYOUT MODELING

After the segmentation and labeling, the layout is interactively mod-
eled by providing constraints that have to be respected during au-
tomatic relayouting. With them, the user can specify permissible
arrangements of adjacent subregions and enforce that aspects of
the input facade that he considers to be elementary, like certain
alignments, are preserved in a relayout. Equally important is that
aspects deemed nonessential are not specified during modeling, as
the relayouting engine is then free to ignore them, thus allowing for
variations.

5.1 Constraints

Region size. For the size of each region (width or height, de-
pending on the arrangement direction in the encompassing region),
an allowed minimum and maximum are maintained, as well as a
probability distribution that is sampled to determine the initial size
of a region when it is inserted into a new layout. By default, we
select a truncated Gaussian distribution centered at the region’s in-
put size and choose the bounds at a fixed fraction from the center.
The user may change the initial-size distribution, for example, by
biasing it towards one of the bounds, and override the minimum and
maximum size, entering them either as an absolute value or as a per-
centage of the input size. Note that by definition, all subregions of a
region that share the same symbol also share their size constraints.

Frequency. Moreover, the number of times regions from a given
set of regions R will be inserted within an encompassing region can
be constrained, either by giving an absolute range or by specifying
a frequency range relative to the encompassing region’s input size.
The set R can be specified by a list of symbols (for subregions of the
encompassing region) and semantic labels. Set-theoretic operations
are also supported, allowing for selections like all regions labeled as
Window except those additionally labeled as Door-sized.
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Fig. 4. A relayout of a composite region is described by an arrangement of
subregions, each denoted by a symbol and associated with a set of labels; it
is only valid if it can be composed by sequences defined during modeling.
Example instantiations of such sequences are shown on the bottom, together
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Fig. 5. Supported constraints include (a) inter-region alignment (at mini-
mum, center, or maximum), (b) enforcing the same size for two sequences,
and (c) reflective symmetry.

Sequences. Within a composite region (refer to Section 4), sub-
regions may be arranged in an arbitrary order, but not all arrange-
ments yield a reasonable layout. To determine which arrangements
are deemed permissible, the user specifies a set of sequences, where
a sequence identifies a list of regions that can appear together in
the given order as a group in the final arrangement. A sequence is
specified by a list of sets of regions and may also contain a leading
or trailing special token corresponding to the beginning (⊢) or the
end (⊣) of the region, respectively. By replacing each set with one
of its members, a concrete instantiation of a sequence is obtained.

During relayouting, the arrangement of subregions in a composite
region is only considered valid if it can be completely covered by the
given sequences, with adjacent sequence instantiations overlapping
in at least one subregion (see Figure 4 for an example). The specified
sequence constraints basically define a string grammar, where we
found the sequence notation to be most intuitive for modeling and
implementation.

Instances. A certain region R, identified by a symbol, may ap-
pear multiple times within the relayout of its parent region. By
default, all of these instances of R are relayouted identically, that
is, they are exact replica. However, the user can define that each
instance of R is relayouted independently; he may also provide a
range, either absolutely or relative to the parent region’s input size,
of how many different instance relayouts are desired within the
parent region’s relayout.

Alignment. To capture mutual alignment of facade elements, the
user can specify that two regions R1 and R2 should be aligned at their
minimum, center, or maximum coordinates (refer to Figure 5(a)) if

(a) Sequence constraint (b) Alignment constraint

Fig. 6. Example screenshots from our user interface for modeling layout
constraints.

they spatially overlap along the alignment direction (horizontal or
vertical). This is determined by the arrangement directions of the
respective parent regions, which have to be consistent. By providing
a preceding and/or a succeeding sequence for each Ri, the alignment
constraint can be restricted to apply only if Ri appears in this context.
It is also possible to limit the constraint to a certain encompassing
region R̃, making it only apply if both Ri are contained within R̃.

Same size. The user can further require that two sequences
have the same size (refer to Figure 5(b)). Again, the arrangement
directions of the respective parent regions have to be identical, and
the application of the constraint may be restricted by defining a
context for each sequence or specifying a required encompassing
region. The same-size constraint may also be used to enforce that
different instances of a region have the same extent irrespective of
their potentially varying relayout.

Symmetry. Finally, it can be specified that a composite region
is reflectively symmetric (refer to Figure 5(c)), which restricts its
subregions such that their symbols form a palindrome. In addition,
the user can mark two symbols as mutually symmetric (e.g., E and K
in Figure 7) to support more complex symmetries like ABCDCEA,
where B and E form a symmetry pair.

5.2 User interface

We provide a user interface for layout modeling; it shows the input
layout in the main window, a sequence editor at the bottom, and
various controls in the menu and toolbar on top and in panels on
the side (refer to Figure 6). Three important components of the
user interface are different ways to make selections (to build sets of
regions), to model sequences by example, and to specify constraints
using shortcuts based on simple automatic layout analysis; these are
described next.

Selecting regions. Initially, an individual terminal region (e.g.,
a window with symbol C) can be selected with the mouse. Using
the mouse wheel or keyboard input, the selection may be navigated
up (and back down) the hierarchy of encompassing regions. The
selection can also be expanded or reduced by a certain region via
modifier keys and the mouse. Additionally, a dialog window can
be opened to perform more complex operations, like expanding the
selection to other regions that share a label (e.g., choosing the label
Window expands the selection to all windows) or employing set
operations, such as intersection and union.

Modeling sequences. To build a sequence, the user can select
individual elements in succession and generalize each of them using
selection operations. The current state of the sequence is represented
in the sequence editor.
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Fig. 7. An exemplary facade with its hierarchical segmentation. Symbols are only shown for the first two levels and some third-level regions; I is decomposed
analogously to G, and K is essentially a mirrored version of E. For notational conciseness (avoiding scope expressions), we use a single symbol namespace for
all subregions in this example (e.g., we use C instead of A.A and L instead of A.B.A).

Modeling further constraints. Using these components,
region-size, same-size, and frequency constraints are typically
straightforward to specify using the controls and dialog boxes.
Alignment constraints are slightly more involved because they re-
quire more complex selections.

Shortcuts. Several constraint specification tasks are only me-
chanical, so that we provide several shortcuts to constraint modeling.
For instance, sequence patterns can be reused for multiple composite
regions if they have identical or similar structure, sequence con-
straints can be reversed, and constraints can be selected from a list
of pre-defined patterns. One important instance of this latter shortcut
is sequence generators.

As most of the time is typically spent on modeling sequence
constraints, we use these sequence generators to quickly model the
most common types of variations. Some of the generators are more
specialized, but the three most important ones are:

(1) Replication. The input sequence or a selected subsequence of it
is added as a valid sequence. This generator is automatically in-
voked in case no sequences have been specified for a composite
region.

(2) Repetition. The user can select regions or subsequences of
regions to denote them as either optional or repeating. The
generated sequences are typical for retargeting where elements
can be replicated or deleted, but the relative order of elements
cannot change. If the order is allowed to change, a more general
relayouting becomes possible, and we refer to it as shuffling.

(3) Two-shuffle. A subsequence of regions is selected by the user,
and then the shuffle generator enumerates all (unique) existing
subsequences of length two and their reversed versions. This is
particularly useful in case of a sequence of elements separated
by identical spacing elements (either with the same symbol or
the same label and using this label in the generator input).

The sequence generators just add valid sequences, so that their
output can be further edited by the user or combined with the output
of another sequence generator.

In our experience, the user interface is sufficient to quickly model
common variations and general enough to model all possible con-
straints in our framework.

6. MODELING EXAMPLE

To illustrate the modeling functionality of the framework with a con-
crete facade, we consider the example in Figure 7. The hierarchical

segmentation follows two design rules: First, we try to capture the
natural decomposition of the layout. Second, we do not group fa-
cade elements such as windows and doors together with surrounding
walls, but try to put splitting lines to separate these elements from
wall regions as early as possible. We found it is easier to control the
spacing between facade elements this way.

As a next step, the sequence constraints are specified, often with
the help of sequence generators. The facade is first split into a top
subregion A and a bottom subregion B. By not explicitly specifying
any sequence constraints for this composite region, the replication
generator is automatically invoked to generate ⊢AB⊣ as the only
permissible sequence.

The top region A itself consists of a pattern CDC, and by selecting
C as optional, the repetition generator creates the sequences ⊢CD,
⊢D, DC⊣, D⊣. The middle part D has two ornaments M shown in
green. In our example design, we want to allow for an arbitrary
number of repetitions (including zero) of these ornaments, where
the separating wall can either be a long (L) or a short segment (N).
To this end, we first group L and N into a region set by assigning
a common label Space to them. After that, we use the repetition
generator to automatically produce the following sequences: ⊢Space,
Space M, M Space, Space⊣.

For modeling the bottom region B, many design choices are pos-
sible. To enable shuffling (and repetition) of the window and door
columns (G, I, J), separated by a wall column (H), we first select
the subsequence of non-boundary columns GH · · ·HG and invoke
the two-shuffle generator, yielding the sequence constraints GH,
HG, HI, IH, HJ, JH. Subsequently, we turn to the start and select
⊢EFG, generalize G to the set of all window and door columns
{G, I, J} (alternatively, we could have assigned a label to them and
select this) and generate the corresponding replicating sequence
⊢EF{G, I, J}. The end is treated analogously, resulting in the con-
straint {G, I, J}FK⊣.

The ornaments on the side (in E and K) can be modeled by
allowing one or more repetitions of the sequence PQR to occur, with
two instances being separated by S, and embracing them with O on
the top and T on the bottom. Using an advanced repetition generator,
we directly obtain the according sequence constraints ⊢OP, PQRSP,
PQRT⊣. Similarly, a repetition generator can also be employed to
model sequences for the window columns G and I, allowing one or
more repetitions of the windows, as well as for the door column J.

The third-level composite regions (R, Z) are not modeled explic-
itly, causing them to be processed automatically by the replication
generator. Therefore, a wall is kept next to the shorter ornaments
(R) and each window in the door column is padded on both sides
with a wall region (Z).
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We then attend to modeling same-size constraints, which in prac-
tice is often interleaved with modeling the sequence constraints.
First, we enforce that the windows in column I and the wider win-
dows in column G have the same height. Subsequently, we declare
that a window in the door column J and a window in column I should
have the same size. This is automatically translated to two same-size
constraints, one for the height and one for the width. After that,
we ensure that floors have the same height. This is more difficult
to model because floors consist of multiple elements, forcing the
constraints to fix the size of sequences rather than the size of single
regions. Concretely, the sequence PQRS in the side ornaments and
the sequences VW in the window columns are constrained to have
the same height. Furthermore, we enforce that the ornaments on
the left side and the right side of the building are symmetrical by
applying same-size constraints both to columns E and K and to the
respective smaller ornaments within them.

To complete the design, we add a frequency constraint to limit
the number of door columns J to one and model two alignment
constraints. The first one ensures that the vertical centers of the larger
and the smaller ornaments on the side (P, R) are aligned with the top
and the bottom, respectively, of the windows in a window column
(V). The second alignment constraint enforces that the ornaments on
top of the facade (M) align with the left, right, or center of a window.
This constraint was partially chosen to demonstrate the flexibility
of the design system. To allow for more variations, we additionally
specify that multiple instances of the ornament M and the spaces
L and N around it can be relayouted independently. The alignment
of the top ornaments is a great example where the generalization
of a single layout requires an active design decision that cannot be
done by an automated system, since many equally valid layout rules
could be derived in this situation.

Designing this example requires a few dozen clicks and can be
done in as few as two to three minutes if the user has a clear goal
of what he wants to model. When starting from scratch, however,
a more realistic time would be between ten and thirty minutes.
This time is mainly spent on experimenting with design choices
and thinking about design strategies rather than the actual user
interface. This part of the design process should not be eliminated.
Two different variations produced with the outlined constraints are
shown in Figure 8.

7. RELAYOUTING

Based on the layout model with its set of constraints, the relayouting
algorithm can generate a variation of the input layout for a given
target region (given by width and height). This layouting problem is
challenging for several reasons. First, a valid layout is a partition of
space, requiring the layout’s terminal regions to cover the complete
facade without overlap. Second, there are a larger number of hard
constraints to observe. Third, relayouting necessitates considering
continuous variables (region sizes) as well as discrete design choices
(e.g., frequency constraints).

While there are several interesting stochastic algorithms that have
been applied to architectural layout problems recently, such as simu-
lated annealing [Yu et al. 2011], random jump MCMC [Talton et al.
2011], and Metropolis-Hastings [Merrell et al. 2010], no simple
adaption to our solution is possible. The constraints are simply too
restrictive, and stochastically navigating the solution space will not
result in a valid solution. For example, Michalek et al. [2002] report
that even for moderate floorplan layouting problems comprising
about ten independent rooms, simulated annealing may often find
no solution, and we have significantly more regions and constraints.

Fig. 8. Two example variations for the facade from Figure 7.

Therefore, we propose a novel algorithm that combines several
building blocks. With the constraints being so restrictive, the overall
strategy is a heuristic search that draws from planning algorithms
targeting constraint satisfaction problems [LaValle 2006]. The goal
of this heuristic search is to suggest discrete design choices. These
are then handed over to a quadratic programming algorithm that can
determine the optimal layout—or fail, indicating that it is impossible
to fulfill the constraints.

7.1 Overview

The proposed relayouting algorithm generates a new hierarchical
subdivision. Starting with the target region as current region, the
algorithm calls a relayouting function layout—the essential build-
ing block of the optimization—to obtain a partition of the current
region into subregions. Each of these subregions is associated with
a symbol, relating it to a region in the input segmentation, and an
instance identifier. The symbol of the current region determines
both the direction along which the subregions are arranged and the
constraints for the layout function. The algorithm proceeds in a
top-down, depth-first manner to recursively split the current region
and then subsequently calls the layout function for all subregions
that are not terminal in randomized order. This strategy effectively
transforms a complex 2D layouting problem into a sequence of 1D
layouting problems. In the following, we first describe the function
layout to establish the basic algorithm. Subsequently, we address
special cases and improvements to better steer the exploration of
possible layouts.

7.2 Layouting a Composite Region

The function layout iteratively builds an arrangement of subregions,
interleaving a discrete search step to add new subregions with a
continuous optimization step to compute the optimal size of these
regions. The subregions are added from left to right or top to bottom,
respectively. The arrangement corresponds to a list A of symbols
(each with an instance identifier) Ai, 0 ≤ i ≤ n, where A0 is always
the special token ⊢, denoting the beginning of the region. Only
once list element An = ⊣, indicating the end of the region, has been
inserted, the arrangement sequence is complete.

To append a new symbol toA, we first generate a set S of valid
successor symbols by identifying all sequences defined for the cur-
rent region that feature a prefix overlapping a postfix ofA. Subse-
quently, several checks are performed to remove elements of S that
cannot result in valid layouts. Most notably, we eliminate symbols
that violate frequency constraints or whose minimum size is too
large to allow them to be placed in the current arrangement.

Assuming that the current incomplete list A consists of k ele-
ments (A0, . . . , Ak−1), we stochastically select an element Ak from S
and sample its initial size x̃k according to the corresponding distri-
bution. We then find all newly active constraints to build a quadratic
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Table I. Statistics for the Example Facade Layouts

Facade Fig. 2 Fig. 3 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 16

Terminal regions (in input) 568 574 1323 93 12016 953 584 560 1071

Frequency constraints 1 5 5 4 0 0 0 2 0
Sequence constraints 56 70 141 102 275 40 33 297 133
Alignment constraints 64 12 87 19 70 29 23 100 40
Same-size constraints 8 3 2 2 11 0 5 0 7

The complexity of the input facade’s hierarchical segmentation is quantified by the number of resulting terminal regions, that is, the number of leaf nodes in the
hierarchy. For the number of layout constraints modeled, note that the number of user interactions is typically lower, as a single input may result in multiple constraints.

programming problem, which optimizes the size xi of all elements
Ai to make them as close as possible to their desired size:

arg min
xi

k∑
i=0

(
xi − x̃i

)2
The constraints for this problem are setup as follows:

—Region-size constraints yield constraints of the form xi ≤ xi ≤ xi,
where xi and xi are the minimum and maximum of the allowed
region size for symbol Ai. If Ai ∈ {⊢, ⊣}, we have xi = xi = x̃i = 0.

—Alignment constraints for element Ak are translated to
∑k−1

i=0 xi +
λxk = y, where λ is chosen according to the type of alignment
(minimum: 0, center: 0.5, maximum: 1) and y corresponds to the
position to align with.

—Same-size constraints where the two affected sequences are both
within the current region result in constraints

∑
i∈I1

xi =
∑

j∈I2
x j,

with the index sets I1 and I2 identifying the sequences. If the
other sequence is not in the current region and hence has already
been placed, the constraint simplifies to

∑
i∈I1

xi = c, where c is a
constant.

—An additional total-size constraint enforces that the elements in
A do not exceed the current region’s size xtotal. It is of the form∑k

i=0 xi ≤ xtotal if Ak , ⊣, and
∑k

i=0 xi = xtotal in case Ak = ⊣.

This quadratic program can be solved using the Goldfarb-Idnani
active set dual method [Goldfarb and Idnani 1983], for which a
public implementation is available [Gaspero 2009].

7.3 Additional Considerations

While the described layout function is complete, it should be ex-
tended as follows. Two of the extensions are necessary to handle all
user input, and three extensions aim at optimizing the computation
speed.

One open problem is the handling of different instances of the
same symbol. For example, consider a floor denoted by symbol A.
As the layout function stacks different floors, the symbol A can be
selected multiple times so that there is a design choice to either
force all occurrences of A to be identical or to allow some of them
to be different. We therefore require an additional pass over the set
S of potential successor symbols to encode what instances of A are
allowed. For instance, if the floor A can have multiple instances, we
add a second possible instance A′ to S.

A second question is how to enforce reflective symmetry in the
list A. Our solution requires minor changes at multiple locations
in the layout function. First, while building a listA from one side
of the region, we also construct a reverse list A from the other
side. Additional checks are then performed on the set of potential
successors S to make sure that sequence constraints imposed by
A are not violated and that frequency constraints are still satisfied

when consideringA andA simultaneously. Further modifications
are also required to finish a layout, as we are now confronted with
two options. The last symbol An inA can either end at the midpoint
1
2 xtotal or the center of An can be aligned with the midpoint.

If no valid layout can be found for the current region, backtrack-
ing is performed. However, backtracking can get stuck figuring out
different local configurations, while not being aware of a funda-
mental error made early on in the layout process, when relayouting
an encompassing region. Therefore, we restart the complete layout
process and start with a new root region if a maximal number of
backtracking steps has been reached (1000 in all examples). Two
other improvements are to generalize backtracking to backjumping
and to randomly accept or reject new elements Ai based on the error
of the quadratic program.

8. RESULTS

In this section, we provide a quantitative and visual evaluation of the
framework. Our prototype was implemented in C# and C++, and we
used nine facade images to evaluate various aspects of performance.
All these examples were segmented interactively.

Layout statistics. A statistical overview of the example facades
is given in Table I. For each facade, we list the complexity of the
input segmentation and the number of constraints. Note that our
layout examples use a significantly larger number of shapes and
constraints than recent systems for floorplan [Merrell et al. 2010]
and furniture layout [Merrell et al. 2011; Yu et al. 2011].

Variety. The facades were selected to show a variety of results.
All outputs are three-dimensional, but we visualize several results in
2D to make the structure better visible. For the facade in Figure 9,
the results feature several interacting structures in different form.
The windows in the first floor and the upper floors have different
glass panel layouts, while they themselves are within a structure
of ornamental linear protrusions. The alignment and spacing be-
tween windows and doors is preserved, even if ornamental ledges
stemming from the top of the facade are mixed into the layout.
The result in Figure 10 shows different width and height variations
for a small input facade. There are fewer elements in the input,
but we can still generate many interesting variations. Our largest
example is a skyscraper (see Figure 11), where our algorithm can
modify three nested grid levels in different ways while preserving
symmetry constraints. One 3D model of the skyscraper comprises
over 100K triangles. We selected the example in Figure 12 for its
subtle variation of a seemingly regular layout. There are several
variations of ornamental elements between windows that all need
to be aligned correctly. The facade in Figure 2 consists of a door
column on the right and a grid of windows on the left, which itself
comprises a top and a bottom part. In the variations, we allow the
door column to move to the interior of the window grid (Figure 2(c),
left) and the bottom part of the window grid to be skipped (right),
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Fig. 9. Example facade (taken from Müller et al. [2007]; top left) with its hierarchical segmentation (bottom left) and three layout variations (right). The
modeled constraints enforce the alignment of windows and doors in the columns and floors of this design, even though the ornamental row can be optionally
repeated between floors. The relayouting algorithm also finds creative new layouts for the panels of the door-sized windows in the first floor in all three examples.
The shuffling of elements enables the door column to appear multiple times and to occur in different positions. The sign on the first floor and the other ornaments
can break the translational symmetry of the columns.

Fig. 10. Several facade variations are shown for the input image in the top row (taken from Lefebvre et al. [2010]), spanning a range of different target facade
sizes. Our algorithm can generate variations that are smaller or larger than the input, as well as multiple different variations for a single target facade size.

while maintaining the correct alignment of windows and ornaments.
A simpler example is demonstrated in Figure 13.

Layout modeling. The user can select how many constraints
to specify and how restrictively to model them. While there is no
direct correlation between the number of constraints and the number
of allowed variations, this is often the case. For example, more
alignment constraints typically result in fewer variations and more
regular layouts. More importantly, the allowed variations depend
on how the constraints are modeled, for example, how long and
general the sequence constraints are. In Figure 14, we illustrate the
effects of three types of layout modeling. The first example (b: loose)
with a random distribution of windows that are often unaligned is
contrasted with the third example (d: strict) that only allows for
fewer, controlled variations (larger areas are similar to the input and
there are more translational symmetries). The second example (c:
medium) is an intermediate form.

Modeling times. Most facade layouts in this article can be mod-
eled in about 30 to 60 minutes, including segmentation. Modeling a
facade layout with constraints is an iterative process and requires

some trial and error. Overall, most of the time is spent analyzing the
input layout and experimenting with different design ideas.

Relayouting performance. Our implementation is reasonably
fast and can generate one layout in typically tens to hundreds of
milliseconds. Average timings for all example facades are given in
Table II, using an Intel Core i7 2.67 GHz.

9. DISCUSSION

While we focused exclusively on single facades so far, the applica-
bility of the approach is not limited to this problem domain. In the
following, we discuss extensions to mass models and according 3D
input as well as layout problems beyond facades. Furthermore, we
provide a comparison to related existing solutions.

9.1 Extensions

Facades on mass models. Our framework naturally extends to
generating facade variations on mass models, like the procedurally
generated ones depicted in Figure 15. During modeling, an attribute
of the modeled constraints designates whether a constraint is only
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Fig. 11. For the input model on the left, we show two variations of smaller
height and larger width. The symmetric design consists of three nested grids
and an ornamental structure on top as well as on the thick gray beams.

Fig. 12. A facade of a hotel (left) and one generated representative variation
(right). Despite its regular appearance, there are several interacting structures
that make this layout interesting.

valid within one face (facade) of the building or if it applies across
faces. That way, a single entrance door for the whole building can be
enforced, and, as demonstrated by the shown results, floor heights
and element sizes can be made coherent across all facades. Because
faces are basically just composite regions, such constraints across
different faces can be treated analogously to constraints between
composite regions on the same facade during relayouting.

3D model input. It is also possible to take a 3D model as input
for the facade generation. One option is to extend the layout domain
from the 2D facade surface to the whole 3D building volume. This,
however, can severely limit the modeling and variation capabilities.
For instance, it would restrict us to footprints with two (typically
orthogonal) facade orientations, precluding a relayout to more inter-
esting shapes, such as a wedge (like the Flatiron Building in New
York City). Therefore, we opted for the alternative of considering
only the facade shells of a building, that is, the outer geometric layer
that contains the facade. These shells are hierarchically decomposed,
basically yielding a 2D segmentation, to which our layout modeling
framework can be applied directly. After a relayout has been com-
puted, the terminal regions are instantiated with the corresponding
3D content from the facade shell. In Figure 18, we show results ob-
tained with this approach for two building models that we adopted
from Google Warehouse.

Fig. 13. Two variations (right) of the input facade on the left. The segmen-
tation and layout modeling of such a simpler facade can be performed within
a few minutes.

(a) Input (b) Loose (c) Medium (d) Strict

Fig. 14. For the shown input facade (a), we modeled three different layouts;
one selected relayouting example is displayed for each (b–d). The first
layout (b) has only a few constraints and the alignment between windows
is not enforced. For the second layout (c), a modest number of constraints
were modeled so that some alignment and some randomness are present.
The third layout (d) has more constraints and allows only for some larger-
scale variations. As a result, there are multiple replicated floors, which are
additionally similar to the input.

Table II. Average Time Required to Generate a New Variation

Facade in Fig. 2 3 9 10 11 12 13 14 16
Time [ms] 173 70 103 27 3715 16 154 105 262

Applications beyond facades. The current approach can be
adapted to further layout problems with regular or semiregular struc-
ture, like tiling patterns, carpet patterns, Charbaghs, labyrinths, and
furniture layouts. As an example, we applied it to the garden layout
in front of the Taj Mahal to produce some variations, as depicted in
Figure 19.

9.2 Comparison to Related Solutions

CGA shape. A formal comparison to CGA shape [Müller et al.
2006] is difficult, because even within CGA shape many different
modeling philosophies can be applied to encode facade layouts.
We just illustrate two fundamental challenges in Figure 16 that
are more difficult to cope with in CGA shape. First, it is easily
possible to align facade elements in different floors if they appear in
a predictable (e.g., fixed) order and all floors have the same pattern,
like all floors creating a layout A{B}∗A, where the number of B’s
can change according to the width of the facade. The symbols may
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Fig. 15. Three examples illustrate how constraints can be extended to handle multiple faces of a mass model. In the top-left example, using the input facade
from Figure 3, we show that all windows are aligned, even though several different window types can be generated throughout the building by relayouting the
window frames. The floor heights are the same across the model to make this variation architecturally plausible. The design on the bottom left (input facade
from Figure 12) demonstrates that our facade layouts can be mapped to curved footprints, as we do not rely on axis-aligned facades. The model on the right
shows a skyscraper (input facade from Figure 11) consisting of three box-shaped masses. The size of the elements is coordinated on all facades of the same
mass, and minor variations are allowed between the different masses.

also have a different geometric interpretation in different floors.
However, it is not easy to randomly select elements from a set if
alignment constraints are in play and to place them in a random
order. One strategy would be to compute the start and end positions
of the randomly selected elements and pass them to all child shapes
in the form of parameters. For complex alignments this leads to
a large number of parameters and if statements in the grammar.
Second, the random selection creates problems with terminating
at a region boundary. Once all elements have been selected, their
sizes would have to be consistently adjusted to fill the whole region.
Otherwise, there is usually some leftover space that cannot be used
well and that hence will be filled with a wall.

Texture synthesis. Lefebvre et al. [2010] proposed an automatic
texture synthesis algorithm that is well suited for facade images.
We obtained about 100 facade synthesis results for our facade data
set from the authors. The advantage of their approach is that it is
automatic and can be applied to other types of architectural textures.
However, the careful modeling in our approach generally leads to
better layouts. Similar to CGA shape, it is difficult for the texture
synthesis algorithm to change the order of elements in a sequence
and many facade variations can never be generated. For example,
the column with the entrance in Figure 9 that contains the door never
changes its place. Also, while many generated layouts are reason-
able, the algorithm is prone to generating artifacts (see Figure 17 for
some examples), such as misalignment, the generation of elements

that are too small (e.g., windows with all glass panels eliminated), an
unnatural spacing of windows, broken symmetry within elements,
and repetition of elements that should not be repeated.

3D architecture retargeting. Recently, Lin et al. [2011] inde-
pendently proposed a solution for retargeting architectural models,
which is a simpler, restrictive form of relayouting. They focus on
complete 3D building models and apply replication and scaling to
elements of it to adapt the model to a new extent. Similar to our ap-
proach, they rely on a manual hierarchical segmentation of the input
model into boxes. While we operate in 2D, their decomposition is in
3D, and this has several consequences. On the one hand, this enables
Lin et al. to better capture interactions between building facades,
as for instance an L-shaped terrace spanning two facades that is cut
out of the main mass of the building or a volumetric structure on the
corners. On the other hand, this limits them to segment a building
into axis-aligned boxes, favoring buildings that can be rotated such
that all facades are aligned to an axis. In the presence of curved
footprints (refer to Figure 15, bottom left) or facades with arbitrary
orientation angles (refer to Figure 18, bottom), complete facades
thus have to be enclosed by a single box and can then only be scaled,
but not retargeted.

For retargeting, the modeling effort in both systems is compara-
ble. However, the examples shown by Lin et al. segment buildings
into larger boxes that include a whole architectural element like a
window or door and its surrounding ornaments, whereas we typi-
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(a) Input (b) CGA shape [Müller et al. 2006] (c) Our approach

Fig. 16. For the input facade on the left (a), we compare a selected CGA-shape variation (b) to one of our variations (c). In the used CGA-shape grammar, each
floor is built with a recursive split rule that randomly adds one new element (window, double window, or wall). However, these random decisions cannot be
easily coordinated across floors, and hence, the inter-floor alignment of elements is missing in the CGA-shape result. Additionally, when greedily populating
each floor with randomly selected elements of varying size, problems arise in terminating cleanly, often necessitating a final, squeezed wall element.

cally subdivide a layout further into smaller elements roughly the
size of window frames or window sills.

Apart from specifying scaling and repetition of elements, we
further allow the user to declare undesirable variations by means
of constraints (e.g., the alignment of ornaments and windows or
windows and windows) and to generate variations via shuffling of
elements rather than solely by changing the number of repetitions,
thus enabling layouts beyond simple retargeting. For instance, from
an input sequence ABB, this makes us easily generate BA, BBA,
or BABBAA. If a user of our system chooses to make use of these
extended capabilities, the modeling times will of course increase.

In some sense, the philosophy between the two approaches is
very different. Lin et al. aim at a simple user interface for casual
users, where only a limited degree of specification is both needed
and possible and where most design choices are left to the automatic
system. As a consequence, only simple retargeting is supported but
not complex relayouting, which requires additional specification. By
contrast, we also target applications in industry where professionals
typically want to exercise more control over the output, and we thus
support relayouting options beyond retargeting and offer additional
and more detailed specification possibilities.

9.3 Limitations

There are several limitations in our system. First, we did not model
detailed facade elements themselves, but only their placement (for
the 3D models in Figure 18, we directly take the input geometry).
For example, it would be nice to have a model of the sign (letters)
in Figure 9. This is only a limitation in our implementation and
not a limitation of the framework. Second, we cannot model lay-
outs on freeform architecture, as we are limited to a rectangular
domain. Third, we only support layouts for which a hierarchical,
rectangular decomposition exists. One consequence of this is that
non-rectangular elements (e.g., circular ornaments) must be approx-
imated by their enclosing rectangles. Furthermore, elements can
only be arranged vertically or horizontally but not along arbitrary
curves. Fourth, the rule modeling process requires some care. It
is possible to model constraints that do not have a single feasible
layout, not even the original facade. Due to the complexity of the
optimization problem, it is in general not possible to determine if
a solution exists. While the heuristic search step would ultimately
explore the whole solution space if the algorithm were run long
enough and thus would find a valid solution if it exists, we abort the
process after no solution has been found for some time, as in a typi-

Fig. 17. Several layout constraints are not considered in a texture synthesis
approach [Lefebvre et al. 2010]. Red: Windows of the same original size can
have different sizes and may be no longer aligned. Purple: The symmetry
within architectural elements, such as windows and doors, can be broken.
Blue: Too many repetitions of the same element, a ventilation vent, can occur
in sequence. Additionally, the vents are no longer aligned. Green: Large gaps
can occur between floors.

cal application of the system, variations should exist and be found
quickly. After all, our system aims at enabling a user to generate
multiple variations of a layout, and we thus assume that the user will
not be interested in generating excessively constrained solutions.

10. CONCLUSION AND FUTURE WORK

We have presented a framework that given an input facade can
produce many different facade layouts. Each offers a variation of
the input that captures the essence of the input’s design, like certain
alignments, as specified by the user in a modeling step.

Based on the experience gained from this project, we believe that
the following problems are especially interesting for future work.
First, we conjecture that the regularization of a noisy input layout
during the initial hierarchical segmentation can be automated. That
is, regions that are only almost aligned or almost identically sized
due to noise and imprecise rectification can be detected and adjusted
to yield exact alignments and consistent sizes. Second, we would
like to combine our approach with an architectural reshaping frame-
work, like the one proposed by Cabral et al. [2009]. Third, mixing
multiple input facade designs to create new, composite designs is
an interesting idea that could significantly increase the number of
attainable variations. Fourth, it would be exciting to investigate
adapting and evolving our approach to work with more general 3D
shapes, possibly by accordingly enriching and modifying existing
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Fig. 18. Our framework can also take 3D models as input (shown on the left). In both examples, we demonstrate the possibility of shuffling columns in the
design. In the top example, the input design has two regions with protruding balconies (that are red and blue). The first variation only uses red balconies, and the
second variation uses four balcony regions alternating in color. The thin orange windows on the yellow facade can be relayouted to create new interesting design
variations. The bottom example shows results for different complex footprints.

shape editing systems, like the one by Bokeloh et al. [2012], which
are currently restricted to basic retargeting operations. Finally, we
believe that the relayouting of plant models will pose additional
challenges that are worth pursuing.
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