
EUROGRAPHICS 2009 / P. Alliez and M. Magnor Short Paper

Multisampled Antialiasing of Per-pixel Geometry

Michael Schwarz and Marc Stamminger

University of Erlangen-Nuremberg

Abstract

Many algorithms exist which generate per-pixel geometry by selectively discarding fragments generated for a

simple bounding geometry. On the other hand, multisampling support has become ubiquitous and is almost free

in current graphics hardware. In this paper we leverage the ability of setting a pixel’s coverage mask in the pixel

shader to make seemingly inherently pixel-based per-pixel geometry approaches compatible with multisampled

antialiasing. We consider both the rendering of curve regions as well as displacement mapping with antialiased

outer and inner silhouettes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing

1. Introduction

Many approaches exist for improving visual quality by an-
tialiasing. A popular technique which has direct hardware
support is multisampling [AMHH08]. Here, each pixel is
composed of several multisamples distributed across the
pixel (cf. Fig. 2), with color and depth being stored for each
multisample. During rendering, a fragment’s color is evalu-
ated only at the pixel center (or a different location within
the rendered primitive’s footprint in case of centroid sam-
pling) while a coverage mask is determined by the rasterizer,
identifying those multisamples that are covered by the ren-
dered primitive’s footprint and to which the computed color
applies. Multisampling is supported by all recent GPUs and
usually incurs at best a minor performance impact.

At the same time, many algorithms have been devel-
oped which generate per-pixel geometry. They render a sim-
ple bounding geometry to trigger the pixel shader’s execu-
tion and then selectively discard fragments depending on
whether they belong to the actual geometry or not. One class
of algorithms employs an implicit equation to determine a
pixel’s membership to the desired geometry. For instance,
regions bounded by Bézier curves [LB05] may be drawn this
way. Another class of algorithms casts a ray from the cam-
era through the pixel center into some geometry, for example
height fields in per-pixel displacement mapping [SKU08]. A
major advantage of such techniques is that one can zoom
in without requiring a finer retessellation of the geometry
to preserve the visual smoothness. On the downside, these

approaches are not directly compatible with multisampling,
often resulting in a jagged appearance.

With the recently introduced Direct3D-10.1-class graph-
ics hardware, it has become possible to read multisample po-
sitions within the pixel shader and output a coverage mask.
In principle, per-pixel geometry algorithms can hence be
adapted to support multisampled antialiasing. However, the
most direct way of just executing the pixel shader for each
multisample separately runs counter to one core idea of mul-
tisampling, the different execution frequency of potentially
expensive shading, performed only once per fragment, and
coverage determination, done for each multisample.

In this paper, we present techniques for augmenting exist-
ing per-pixel geometry approaches with support for multi-
sampled antialiasing that preserve the execution frequency
of the shader computations, i.e. their time complexity re-
mains constant instead of linear in the number of multi-
samples. First, we discuss the rendering of curve regions
(Sec. 2), extending an approach that evaluates an implicit
equation. Second, as an example for a ray-casting technique,
we deal with displacement mapping (Sec. 3), accounting for
both outer and inner silhouettes.

2. Curve rendering

An elegant algorithm for rendering regions bounded by
quadratic and cubic Bézier curves was introduced by Loop
and Blinn [LB05]. In the quadratic case, where a curve is

c© The Eurographics Association 2009.

Michael Schwarz
Notice
This is the author's version of the work. The definitive version is available at diglib.eg.org.

M. Schwarz & M. Stamminger / Multisampled Antialiasing of Per-pixel Geometry

per pixel alpha blending alpha-to-coverage per multisample approximate coverage

Figure 1: Example of curve rendering with 8 multisamples. While alpha blending and alpha-to-coverage fail at some interface

pixels, both per-multisample evaluation and our approximate coverage technique yield good visual results.

2 multisamples 4 multisamples 8 multisamples

Figure 2: Multisample patterns for the standard quality

level defined by Direct3D 10.1.

specified by control points b0, b1, b2, they render a triangle
with vertex positions bi and (u,v) texture coordinates (0,0),
(1

2 ,0), (1,1), respectively. In the pixel shader, the implicit
function f (u,v) = u2 − v is evaluated. Its sign determines
whether the pixel is inside or outside the region bounded
by the curve. For the convex region of the curve, a value
f (u,v) > 0 identifies pixels outside; in such cases the frag-
ment gets discarded in the pixel shader.

As shown in Fig. 1, this simple per-pixel procedure is
prone to aliasing, leading to a jagged appearance. To alle-
viate this, Loop and Blinn [LB05] suggested an antialias-
ing scheme where for each pixel an alpha value approxi-
mating the pixel area covered by the curve region is de-
termined. They first compute the gradient ∇g(X ,Y) for
g(X ,Y) = f (Ψ(X ,Y)) where Ψ is the mapping from pixel
space (X ,Y) to texture space (u,v), and calculate an approx-
imate signed distance d(X ,Y) = g(X ,Y)/‖∇g(X ,Y)‖. This
distance is then used to derive an alpha value; for the convex
curve region case

α(X ,Y) = max
(

0,min
(

1, 1
2 −d(X ,Y)

))

.

While this approach works well in practice for isolated
curves, multiple overlapping curves cause problems because
it is unclear how to combine their alpha values which repre-
sent coverage factors. Treating them as transparency values
and performing alpha blending [PD84] can lead to visual
artifacts, only some of which may be prevented by depth-
sorted rendering of the curve regions.

Consider the situation in Fig. 1 again. Since the blue curve
region is rendered atop the other ones, we get a correct re-
sult at the interface of the blue region with the interior of
the other two curve regions. However, at pixels intersected
by two or more curves, simple alpha blending fails irre-
spective of the rendering order. This is especially obvious
at the interface of the red and the green regions, which both

g

∆

d g=0

Figure 3: Utilizing the (approximate) gradient ∇g and

signed distance d of the curve g = 0 (left), we determine a

half space and derive the contained multisamples (right) via

a look-up texture.

use the same curve as boundary; here alpha blending causes
the occluded black background to actually have a non-zero
contribution. (Note that in this special case additive blend-
ing would work except in the pixel intersected by all three
curves.)

In a multisampled setup, alpha-to-coverage [AMHH08]
can be used instead of alpha blending. The alpha value is
mapped to a coverage mask where the percentage of set mul-
tisamples corresponds to the alpha value. While it circum-
vents the necessity for sorting, it basically fails in the same
cases as alpha blending. For instance, if a pixel has an alpha
value of 50% for both the green and the red curve, alpha-to-
coverage yields the same coverage mask for both curves, i.e.
the overall coverage would be only 50% instead of 100%.

In contrast, correct multisampled antialiasing can be
achieved by evaluating f (u,v) at each multisample of a pixel
and setting the corresponding coverage mask. While correct,
this approach somehow defies the idea of multisampling; in
particular we want the pixel shader’s time complexity to be
constant and not linear in the number of multisamples.

To this end, we compute ∇g(X ,Y) and d(X ,Y) as be-
fore. However, instead of deriving an alpha value, we use
these quantities to derive an approximation of the exact
coverage mask. The line 〈x,n〉 + d(X ,Y) = 0 with n =
∇g(X ,Y)/‖∇g(X ,Y)‖ separates the pixel area into two half
spaces (cf. Fig. 3). We precompute the coverage masks for
a number of half spaces and provide them in a 2D look-up
texture. For texture parameterization, we employ the Hough
transform [DH72] in a way similar to Eisemann and Dé-
coret [ED07]. That is, all we have to do is to load the corre-
sponding coverage mask from a texture based on ∇g(X ,Y)
and d(X ,Y) and output this mask in addition to the color in
the pixel shader.

c© The Eurographics Association 2009.

M. Schwarz & M. Stamminger / Multisampled Antialiasing of Per-pixel Geometry

Due to the half space approximation, the coverage mask
is not always exact. Recall however that the alpha value is
also only approximate in nature. Moreover, while the alpha
value is a function of distance to the pixel center only, the
half space approximation also accounts for orientation. As
exemplarily shown in Fig. 1, the visual result with our ap-
proximate coverage approach is basically indistinguishable
from the multisample-accurate solution. Concerning perfor-
mance, our approach has a negligible impact. On an AMD
Radeon HD 4850 at 1024× 768 resolution and with 8 mul-
tisamples, the scene from Fig. 1 renders at 450 Hz with our
technique compared to 456 Hz with alpha-based antialias-
ing. In contrast per-sample evaluation runs only at 229 Hz.

The cubic curve case can be dealt with analogously, only
the texture coordinates associated with the control points, g

and ∇g must be adapted accordingly. The same technique
can also be applied to other shapes defined by an implicit
equation.

3. Displacement mapping

In the real-time rendering context, displacement mapping
[Coo84] is usually implemented by drawing a simple bound-
ing geometry and performing ray casting against the height
field defining the displacement in the pixel shader [SKU08].
If the height field is missed by the spawned ray, the fragment
gets discarded.

Compared to techniques like curve rendering discussed
above, in displacement mapping aliasing occurs not only
at boundaries of the mapped geometry but also at interior
silhouettes. High-quality antialiasing hence necessitates ex-
pensive methods like casting multiple rays per pixel (for in-
stance, one per multisample) or casting a beam. Our goal
is to achieve reasonable antialiasing, both at outer and in-
ner silhouettes, without having to cast more than one ray per
pixel, keeping the performance impact acceptable. Note that
the restriction to one ray implies that some features of the
height map may get missed and hence determining accurate
coverage masks is impossible.

We selected the state-of-the-art maximum mipmap ap-
proach of Tevs et al. [TIS08] as basis for our antialiasing
technique. For each pixel a ray from the camera position to
the pixel center is cast against the height field. Ultimately,
the ray is intersected against a bilinear patch defined by 2×2
height map values using a rather expensive analytic solution.
To avoid unnecessary intersection tests, a kind of maximum
quadtree called maximum mipmap is employed as accelera-
tion structure.

For each pixel, we start with an empty coverage mask and
trace a ray against the height field until either the coverage
mask is completely set or the ray left the bounding geometry.
If the ray hits a bilinear patch, we perform shading and deter-
mine an approximate coverage mask. The pixel’s coverage

(a) far edge (b) diagonal 1 (c) diagonal 2

Figure 4: Based on the height field values, different patch

horizons (red line) can occur. Left: top-down view of height

map with ray. Right: pixel view.

pixel

hmin

Figure 5: A ray hitting a patch whose boundary constitutes

an inner silhouette may never hit patches farther away, even

if they cover the rest of the pixel.

mask is updated by ORing in this new coverage mask. More-
over, we add the shading color to the pixel color, weighting
it based on how many new coverage mask bits got set.

To determine the coverage mask for a hit patch, we resort
to a heuristic. In particular, we also have to cheaply account
for adjacent patches that cover the pixel area since otherwise
visibility artifacts can occur. We first note that a patch’s pixel
coverage is mainly influenced by the patch’s “horizon” (cf.
Fig. 4). Based on this observation, we project all four patch
vertices to pixel space and construct an initial horizon line
defined by the two far-edge vertices. We then test the two re-
maining vertices against this line; if any of them is above the
line, the horizon is updated accordingly. Consequently, we
conservatively approximate the horizon in the diagonal cases
(cf. Fig. 4 b, c) by a line. Finally, we consider the patch adja-
cent to the current patch in the ray’s principal direction and
test the pixel-space projections of its two far-edge vertices
against the horizon line. If none of them is above the line,
we assume the horizon to constitute an inner silhouette; the
appropriate coverage mask is determined as in Sec. 2 for the
half space below the horizon line by utilizing a look-up tex-
ture. On the other hand, if any of these two vertices is above
the horizon, the adjacent patch is visible (like in Fig. 4 a) and
we adopt a fully set coverage mask.

In same rare cases, it might happen that while the adja-
cent patch is not visible, patches further away are visible and
cover the whole pixel but are never hit by the ray (cf. Fig. 5).
As a consequence, the final coverage mask may incorrectly
not be fully set, i.e. the background partially contributes to
the final pixel color but shouldn’t. To alleviate this, we first
observe that if the ray exits the bounding geometry below
the minimum height field value hmin of all patches traversed
further along the ray, the height field is ultimately above the
ray and hence covers at least part of the pixel. Each time,
a patch it hit, we determine an approximation of hmin and

c© The Eurographics Association 2009.

M. Schwarz & M. Stamminger / Multisampled Antialiasing of Per-pixel Geometry

per pixel approximate coverage with adapted ray (8 multisamples)

Figure 6: Example of displacement mapping with conventional per-pixel execution and our approximate coverage technique.

check the ray against it; if the ray will exit below hmin, we
set a “below” bit. Finally, when the displacement mapping
algorithm has completed and the coverage mask is not fully
set, we check the below bit. If it is set, we upgrade the cov-
erage mask to full coverage. The hmin values for each patch
are stored in a pre-computed texture, where we quantize the
ray directions to eight sectors.

Note that due to the simplified treatment of the visibil-
ity of neighboring patches, our method may miss some sil-
houettes and overestimate coverage. For the special cases
where the patch is at the left or right boundary of the height
field, we further determine the coverage mask for the left or
right patch edge, respectively, and AND it with the horizon-
based patch coverage mask to improve outer silhouette per-
formance.

When casting the ray through the pixel center, silhouettes
can only be detected if the pixel center lies below the corre-
sponding patch horizon. As a consequence, coverage values
of less than 50% can never occur, which negatively impacts
the antialiasing capabilities. We hence adapt the cast ray to-
wards the pixel corner in the downward direction and clos-
est to the screen center. On the downside, since the ray is
also used for shading, the displacement mapping result gets
slightly distorted, which is however only noticeable when
switching to the reference solution.

As shown in Fig. 6, our technique improves the visual
quality compared to the ordinary per-pixel execution of the
displacement mapping algorithm. In particular, when us-
ing an adapted ray, a reasonable antialiasing performance is
achieved. However, there is usually still a gap to the qual-
ity obtained with the expensive per-multisample execution.
Concerning performance, the visual improvements offered
by our approach come at a moderate cost. On an AMD
Radeon HD 4850 at 1024× 768 resolution and with 8 multi-
samples, the rocks from Fig. 6 render at 75 Hz with conven-
tional per-pixel execution and at 50 Hz with our technique
while per-multisample execution runs at only 7.7 Hz.

4. Conclusion

Multisample support is ubiquitous and almost for free with
current hardware. On the other hand many algorithms for
generating per-pixel geometry exist, most of which ignore
antialiasing issues. In this paper, we have presented two con-
crete techniques for augmenting such algorithms with mul-
tisampled antialiasing capabilities. As first example, we dis-
cussed the rendering of regions bounded by quadratic curves
and also highlighted weaknesses with alternative antialiasing
approaches. We then showed how to incorporate multisam-
ple coverage masks into a displacement mapping algorithm
to improve visual quality of both outer and inner silhouettes.

References

[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering, 3rd ed. A. K. Peters, 2008.

[Coo84] COOK R. L.: Shade trees. Computer Graphics 18, 3
(1984), 223–231.

[DH72] DUDA R. O., HART P. E.: Use of the Hough transfor-
mation to detect lines and curves in pictures. Communications of

the ACM 15, 1 (1972), 11–15.

[ED07] EISEMANN E., DÉCORET X.: Visibility sampling on
GPU and applications. Computer Graphics Forum 26, 3 (2007),
535–544.

[LB05] LOOP C., BLINN J.: Resolution independent curve ren-
dering using programmable graphics hardware. ACM Transac-

tions on Graphics 24, 3 (2005), 1000–1009.

[PD84] PORTER T., DUFF T.: Compositing digital images. Com-

puter Graphics 18, 3 (1984), 253–259.

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Displacement
mapping on the GPU — State of the art. Computer Graphics

Forum 27, 6 (2008), 1567–1592.

[TIS08] TEVS A., IHRKE I., SEIDEL H.-P.: Maximum mipmaps
for fast, accurate, and scalable dynamic height field rendering.
In Proceedings of Symposium on Interactive 3D Graphics and

Games (I3D 2008) (2008), pp. 183–190.

c© The Eurographics Association 2009.

