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Abstract

Computer-generated images have become ubiquitous and an important tool in numerous do-
mains. Rendering them at real-time rates allows the interactive exploration of virtual scenes,
which is essential for many applications like computer games.Thanks to the wide-spread avail-
ability and rapid evolution of graphics hardware offering huge computational power, such a
real-time image synthesis is possible for increasingly complex scenes and effects. Concurrently,
demands on visual quality are continuously rising, and the desire for realistic appearance is in-
tensifying. However, achieving this goal poses many challenges and comprises a wide range of
aspects.

This thesis addresses three significant of these issues and provides new solutions which en-
hance the realism attainable at real-time rates with graphics hardware. First, soft shadows are
covered.These offer valuable visual cues and significantly contribute to realism.We introduce a
novel approach for determining light occlusion, which, in particular, correctly handles overlap-
ping shadow casters. Moreover, methods for concentrating computational efforts on relevant
light blockers, new advanced occluder approximations, and a scheme for smoothly varying
shadow quality to locally adapt rendering costs are presented.

The second focus is on curved surface primitives, whose adoption allowsmaintaining visual
smoothness, as encounteredwith real-world shapes, irrespective of view and zoom.We provide
a comprehensive overview and describe several new contributions for rendering such surfaces
via adaptive tessellation. Most notably, a novel, flexible framework is proposed which enables
efficiently running all involved major steps entirely on graphics hardware.

Visual perception and its limited sensitivity are at the center of the third topic treated.They
play an important role because images are eventually produced to be viewed by a human. We
present a graphics-hardware-based approach for rapidly computing a perceptually motivated
imagemetric which predicts tolerable pixel-value deviations, enabling its on-the-fly use during
rendering, for instance to exploit scene-level visual masking for guiding level-of-detail selec-
tion. Moreover, a novel perceptually-motivated predictor for the perceptibility of visual pop-
ping artifacts is introduced and evaluated in a user study.
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Kurzzusammenfassung

Computergenerierte Bilder sind in zahlreichen Gebieten allgegenwärtig und ein wichtiges In-
strument geworden. Ihre Erzeugung in Echtzeitgeschwindigkeit ermöglicht die interaktive Er-
kundung virtueller Szenen,waswesentlich für eineVielzahl vonAnwendungen,wie etwaCom-
puterspiele, ist. Dank der weiten Verfügbarkeit und schnellen Entwicklung von große Rechen-
leistung bietender Grafikhardware ist solch eine Echtzeitbildsynthese für zunehmend komple-
xere Szenen und Effekte möglich. Gleichzeitig steigen die Ansprüche an die visuelle Qualität
kontinuierlich und derWunsch nach einem realistischenAussehenwird stärker. Das Erreichen
dieses Ziels wirft jedoch viele Herausforderungen auf und umfaßt eine Vielfalt an Gesichts-
punkten.

Diese Arbeit behandelt drei bedeutende dieser Probleme und bietet neue Lösungen, die
den in Echtzeit mittels Grafikhardware erzielbaren Realismus erhöhen. Als erstes werden wei-
che Schatten behandelt. Diese liefern wichtige visuelle Hinweise und tragen wesentlich zu ei-
ner realistischen Erscheinung bei. Ein neuartiger Ansatz für die Bestimmung der Lichtver-
deckung wird vorgestellt, der insbesondere mit Schatten werfenden Objekten, die sich über-
lappen, korrekt verfährt. Des weiteren werden Methoden zur Fokussierung der Rechenbemü-
hungen auf relevante das Licht versperrende Objekte, neue fortgeschrittene Approximationen
für verdeckende Objekte sowie ein Verfahren, das die Schattenqualität zur lokalen Anpassung
der Renderkosten visuell stufenlos variiert, präsentiert.

Der zweite Schwerpunkt liegt auf gekrümmten Flächenprimitiven, deren Einsatz es ermög-
licht, sichtbareGlattheit, wie sie bei Formender realenWelt anzutreffen ist, unabhängig von der
konkreten Ansicht aufrechtzuerhalten. Ein umfangreicher Überblick wird gegeben und meh-
rere neue Beiträge zum Rendern solcher Flächen mittels adaptiver Tesselierung beschrieben.
Insbesondere wird ein neuartiges, flexibles Rahmenwerk vorgestellt, das die effiziente Ausfüh-
rung aller wichtigen dazugehörigen Schritte vollständig auf der Grafikhardware ermöglicht.

Die visuelle Wahrnehmung und ihre eingeschränkte Empfindlichkeit stehen im Zentrum
des dritten betrachteten Themengebiets. Sie spielen eine wichtige Rolle, da Bilder letztendlich
erzeugt werden, um durch einenMenschen betrachtet zu werden. Ein die Grafikhardware ver-
wendender Ansatz zur schnellen Berechnung einer wahrnehmungsbasierten Metrik, die tole-
rierbare Pixelwertabweichungen vorhersagt, wird vorgestellt. Dieser ermöglicht ihren fliegen-
den Einsatz während der Bildsynthese, beispielsweise um szenenweite visuelle Maskierungsef-
fekte bei der Detailstufenauswahl auszunutzen. Darüber hinaus wird ein neuartiges wahrneh-
mungsbasiertes Verfahren für die Vorhersage der Wahrnehmbarkeit von visuellen Popping-
Artefakten eingeführt und mittels einer Nutzerstudie evaluiert.
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CHAPTER 1

Introduction

Computer graphics is concerned with generating synthetic images, which are nowadays rou-
tinely employed in a plethora of domains as diverse as movies and medical imaging. An im-
portant branch aims at rendering such images instantly at real-time rates, thus essentially pro-
ducing a video stream while being viewed. This real-time rendering allows the interactive ex-
ploration of data sets and virtual scenes, and is at the heart of computer games, which have
evolved to a huge mass market.

With thematuring of the field, demands on visual quality are increasing. In particular,many
applications strive for a high degree of realism, often with the ultimate (long-term) goal of
delivering photo-realistic images in real time. This comprises a multitude of aspects like the
desire to incorporate global effects such as shadows and interreflecting light. Further objectives
include supporting illumination from large sources like the sky, modeling real-world materials
like car paint, and employing more detailed and visually smooth geometric objects.

This aim for realism is also reflected in the growing complexity of employed scene assets
as well as their origin. For example, real objects are scanned to acquire geometric detail, the
motion of actors is captured to obtain animation data for articulated characters, and a vast
collection of photographs of a surface sample is used to derive a material description. Another
factor which raises expectations of higher detail and quality is the increasing resolution and
size of display devices, facilitating paying attention to fine detail.

Simultaneously, driven by the demands especially from the gamesmarket, dedicated graph-
ics hardware has evolved tremendously and become a mainstream computer component. Its
computational power and memory bandwidth now typically far exceed the ones offered by a
standard CPU. Utilizing highly parallel graphics hardware is thus crucial for achieving satis-
factory frame rates in real-time rendering, but it is also challenging. In particular, for high per-
formance an appropriate formulation of the task must be devised which, among others, yields
a reasonable degree of data parallelism.

However, even with graphics hardware fast response times usually necessitate approxima-
tions and quality restrictions. Since the image is synthesized for a human viewer, it is hence
expedient to leverage human visual perception for improving rendering efficiency, ideally pro-
viding only exactly as much detail as can actually be perceived. Moreover, accounting for per-
ception helps avoiding disturbing visual artifacts which hamper realistic appearance.

Improving realism in real-time rendering has thus many diverse facets, and is the focus of
extensive active research.This thesis contributes to these efforts and introduces new approaches
and techniques for physically plausible soft shadows, the resolution-independent rendering of
curved surfaces, as well as for taking human visual perception into consideration.

1



2 1.1 Contributions

1.1 Contributions

In this dissertation, three selected topics are investigated which play an important role in en-
hancing the realism that is achievable at real-time frame rates. The first covered aspect are soft
shadows cast from an area light source. They provide valuable visual cues and are typically
essential for a realistic appearance. Building on the general technique of deriving occluder ap-
proximations from a shadowmap and backprojecting them onto the light source to determine
light visibility, we introduce methods which improve on visual quality and performance, and
thus on attainable realism. Our contributions include

• a new approach for visibility determination, occlusion bitmasks, that offers a robust solution
to the occluder fusion problem and hence to a main obstacle to high quality in previous
algorithms (Sec. 4.2),

• efficient acceleration structures for concentrating computations on relevant occluders and
detecting completely lit and entirely shadowed points (Sec. 4.3),

• a new breed of occluder approximations extracted from a shadow map with several favor-
able features, like implicitly avoiding light leaks (Sec. 4.4),

• a new type of occluder approximation which raises reconstruction quality and hence accu-
racy at coarser resolution levels (Sec. 4.5),

• a visibility interpolation method for cheaply supporting soft shadows in multisample ren-
dering (Sec. 4.6), and

• a practical scheme for smoothly varying soft shadow quality in screen space, which allows
adapting rendering efforts according to visual importance (Sec. 5.2).

The second focus of this thesis is on rendering curved surfaces.These are essential to repli-
cate the visual smoothness of many shapes encountered in the real world independent of view
and zoom factor. In particular, their use avoids often-observed visibly piecewise-linear silhou-
ettes, which may easily destroy realism. We largely employ adaptive tessellation for rendering,
improving on attainable performance. Our main contributions are

• a comprehensive overview of adaptive tessellation approaches, concentrating on those uti-
lizing graphics hardware, which also provides critical reflections on them (Chapter 7),

• a novel, flexible, patch-parallel framework for adaptive tessellation, termedCudaTess, which
runs all major steps, like deriving consistent tessellation factors, determining and evaluat-
ing surface sample points, and creating the tessellation topology, completely on the graphics
processing unit (GPU), and whichmore generally provides an efficient solution for dynam-
ically generating varying amounts of geometry purely on the GPU (Sec. 7.6),

• a newmethod for rapidly determining the tessellation factor for a PN triangle such that the
approximation error stays small (Sec. 7.4.5),

• a new approach for rendering PN triangle meshes using domain pre-tessellations, which
closes gaps inherent to the PN triangle refinement of a base mesh (Sec. 7.5.2), as well as

• a pixel-shader-based approach for raycasting PN triangles (Sec. 6.5.2).



CHAPTER 1 Introduction 3

The third field addressed by this thesis is human visual perception and its limited sensitivity.
On the one hand, rendering efficiency can be improved by exploiting this restricted detection
ability to avoid spending effort on producing detail which is eventually invisible to the user,
thus enabling a higher realism for a given time budget. On the other hand, perceptual results
can be leveraged to quantify visual artifacts which may impact the perceived degree of realism.
Covering both aspects, we present
• an approach to rapidly compute a threshold map, a perceptually motivated image metric
predicting tolerable per-pixel deviations (Sec. 9.4), which enables exploiting sensitivity-
reducing effects like visual masking on a scene level for controlling the employed geometric
level of detail (Sec. 9.5),

• a perceptually motivated predictor for estimating whether popping artifacts occur when
switching between two levels of detail of an object, which incorporates a spatio-velocity
color visionmodel and aggregatesmodel output tomeaningful popping regions (Sec. 10.3),
and

• a user study conducted to evaluate the predictor, showing encouraging results (Sec. 10.4).

1.2 Outline

Our treatment of three distinct topics is also reflected in the structure of this thesis, where one
part is dedicated to each of them. Note that since our contributions are not entirely unrelated
to other research efforts and previous solutions, we decided to present them in their respective
context instead of devoting a single chapter exclusively to each of our new methods.

At first, we review some background on real-time rendering in Chapter 2, introducing
terms and concepts for the remainder of the dissertation.

Subsequently, soft shadows are covered in Part I. Initially, Chapter 3 provides an overview
of soft shadows in general and of existing approaches for rendering (approximations of) them
in real time. Chapter 4 then discusses the adopted general soft shadow algorithm and presents
our diverse contributions concerning visibility determination, acceleration structures, occluder
approximations and cheapmultisample support. After that, level-of-quality approaches for soft
shadows are considered in Chapter 5 and a practical scheme for smooth quality variation is
described.

The second part is concerned with rendering curved surfaces. Chapter 6 reviews important
representatives of according primitives, paying special regard to issues related to real-time ren-
dering, and gives an overview of rendering approaches, during which our raycasting method
for PN triangles is introduced. Subsequently, a comprehensive treatment of adaptive tessella-
tion techniques is provided in Chapter 7. In particular, our numerous contributions are pre-
sented, including a novel, patch-parallel framework which executes all significant steps on the
graphics hardware.

Part III focuses on exploiting and accounting for human visual perception during render-
ing. At first, Chapter 8 covers some fundamental background on perception. Chapter 9 then
discusses utilizing core characteristics of visual perception for rendering. It introduces our real-
time threshold maps and describes their application to controlling the employed geometric
level of detail of objects. By contrast, Chapter 10 is dedicated to the perception of popping
artifacts and presents our predictor and its evaluation within a user study.

Finally, Chapter 11 closes this thesis with a brief conclusion.





CHAPTER 2

Real-time rendering

Throughout this thesis, we are primarily concernedwith the domain of real-time rendering, the
creation of images at rates rapid enough that their instantaneous display induces the notion of
a continuous image sequence. Since achieving a high performance is crucial, this naturally in-
volves employing dedicated graphics hardware for carrying out the majority of computations.
Moreover, we strive for compatibility with the standard graphics rendering pipeline in the de-
sign of our methods to facilitate integration with existing real-time solutions.

In this chapter, we briefly review some related core topics, introducing terms and concepts
utilized in the following parts. Note that a basic knowledge of real-time rendering is assumed,
nevertheless. A good resource is the book by Akenine-Möller et al. [8]; further background on
computer graphics in general is provided by Shirley et al. [356], for instance.

At first, we give a short overview of the rendering pipeline, before covering recent graphics
hardware as well as its use for tasks beyond pure rendering, like general data-parallel computa-
tions. Subsequently, approaches for adapting the level of detail are discussed. Finally, we briefly
elaborate on the pursued goal of realism.

2.1 Rendering pipeline

Therendering pipeline is central to real-time rendering. It decomposes the image synthesis task
into several logical stages. On a high level, the application provides geometric data as input
and adapts the stages accordingly to yield the desired behavior. The pipeline then processes
the items, determines pixel colors and outputs the result into the frame buffer, which typically
comprises a color buffer and a depth buffer for visible-surface determination.

Thanks to the graphics APIs OpenGL and Direct3D, the pipeline is essentially standard-
ized and a close mapping of the stages to graphics hardware units exist. Note that as APIs and
hardware evolve, different pipeline versions emerge, for instance by introducing new stages. In
the following, we focus on the graphics pipeline as defined by Direct3D 10 [38], which is re-
alized by all current graphics hardware. Fig. 2.1 provides an overview. Two kinds of stages can
be distinguished. Whereas fixed-function stages lack flexibility and only offer limited control
by means of a few state parameters, programmable stages may be freely customized via user-
provided programs. These so-called shaders can access constants, sample textures and read
from arbitrary buffer locations when processing their input.

The flow of data through the pipeline into a certain output buffer is initiated by a draw call
of the employedAPI. At first, the input assembly stage takes the application-specified geometric
data, which is typically provided in vertex and index buffers, and prepares it for the subsequent

5
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Figure 2.1 Overview of the rendering pipeline.

steps. Different input primitive topologies are supported, like point lists and lists and strips of
lines or triangles, but also adjacency-augmented ones which further comprise vertices of di-
rectly adjoining primitives.

Subsequently, each input vertex is processed independently in the vertex shader stage. The
invoked shader instance performs per-vertex computations, like the transformation of vertex
position into clip space (cf. Fig. 2.2). After that, the processed vertices are combined to indi-
vidual primitives according to the specified topology by the primitive assembler.

These primitives are then (optionally) fed into the geometry shader stage. For each primi-
tive, a separate shader instance is launched, which has access to all vertices of the primitive. It
is intended to perform primitive-wide computations as, for example, deriving the face normal,
and may even account for directly adjoining primitives in case an adjacency-augmented prim-
itive topology is employed. Note that a geometry shader can use either point lists, line strips
or triangle strips as output primitive topology, independent from its input. Consequently, the
primitive type may be altered in this stage, and more than one output primitive can be emitted
per input primitive. It is also possible to effectively discard an input primitive by outputting no
primitives.

The resulting primitives can be streamed out to memory via the stream output stage. They
are recorded as a set of individual primitives in the stream output buffer, which may be used as
input for a further pass through the pipeline. Typically, however, the primitives arriving from
the geometry shader stage are processed by the rasterizer. Each primitive is clipped, trans-
formed to screen space (cf. Fig. 2.2) and then rasterized by generating a fragment for each
covered pixel,1 interpolating vertex attributes accordingly.

Subsequently, a pixel shader (also referred to as fragment shader) is run for each fragment.
It determines the final color or pixel value and optionally adapts the depth value.The resulting
pixel data is then combined with the existing frame buffer content by the output merger. This

1In case of triangles (and no multisampling), a pixel is considered to be covered if its center is inside the
triangle.
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Figure 2.2 Coordinate spaces typically involved in rendering. Each object is initially defined
in its own localmodel space, and placed within the scene by a subsequent transformation into
world space. After that, a transformation into camera space (often also called eye space) is per-
formed, such that the camera (eye) is placed at the origin and looks down the negative (or
sometimes the positive) z axis. In a next step, the scene is subjected to a perspective (or al-
ternatively an orthographic) projection into homogeneous clip space, which maps the defined
viewing volume (a frustum or an axis-aligned box, respectively) into a cube, clipping away ev-
erything outside. After a dehomogenizing divide, resulting in normalized device coordinates,
a final transformation into screen space is carried out. Here, (x , y) coordinates specify pixel
location, while z encodes depth.

typically involves a depth test to resolve surface visibility, where the new depth value is com-
pared against the one currently stored in the depth buffer to determinewhether the pixel should
be updated. Apart from simply replacing the old pixel value,more complex blending operations
are supported. Note that the frame buffer may not necessarily contain a single color buffer but
can comprise multiple render targets (up to eight), each consisting of up to four channels (of
possibly 32-bit floating-point precision).

Normally, some optimizations are incorporated into realizations of the pipeline to increase
efficiency. For instance, to avoid running the pixel shader for fragments which eventually fail
the depth test, this check is already performed in the rasterizer, discarding the fragment unless
it passes. In addition to this so-called early-z test, often z-culling is performed. To this end,
a coarser-resolution version of the depth buffer is maintained (possibly at reduced bit depth),
storing a conservative depth bound for each screen tile. Before producing any fragments within
a tile, the rasterizer then first tests the primitive against the tile’s depth bound. Note that these
optimizations are only possible if the pixel shader doesn’t modify the fragment’s depth.

2.2 Graphics hardware

The whole rendering pipeline as detailed in the last section is realized by current consumer
graphics hardware like NVIDIA’s GeForce GTX 280 or AMD’s ATI Radeon HD 4870. Ow-
ing to the demands of the games market and facilitated by its huge volume, they feature high
computational power and large memory bandwidths at affordable prices and are nowadays an
integral part of basically all (entertainment) computers.

The central component of graphics hardware is the graphics processing unit (GPU) [120,
282], which is responsible for carrying out the computations. It features dedicated special-
purpose units for handling the fixed-function pipeline stages, like a rasterizer or raster op-
eration processors (ROPs), which implement the output merger. Moreover, extensive compu-
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tational resources exist for shader execution. These are actually shared by all shader stages in
the prevalent unified shader architecture. By dynamically assigning vertex, geometry and pixel
shader instances depending on the actual workload, a high utilization can thus be achieved.
Note that since each vertex is processed independently from the other vertices but the same
vertex shader is executed for all of them, they may be treated in a data-parallel fashion. The
same holds for primitives and fragments. As reflected in their architecture, GPUs heavily ex-
ploit this massive parallelism to achieve high performance.

Recent NVIDIA GPUs [218], for instance, feature a large number of scalar arithmetic logic
units (ALUs), called streaming-processors (SPs), each capable of 32-bit floating-point and inte-
ger operations. These are arranged in groups of eight, each constituting a core referred to as
streaming multiprocessor (SM). The ALUs of a core are run in SIMD (single instruction, mul-
tiple data) fashion, that is, while each ALU operates on different data (e.g. a different vertex),
they all execute the same instruction at a time. The hardware further directly supports light-
weight threads, with one thread being spawned per vertex, primitive or fragment, executing
the respective shader program on a single ALU. Groups of 32 threads, referred to as warps,
are run in a time-sliced way. This multithreading enables a high throughput, keeping ALUs
utilized despite thread stalls and thus hiding memory access latency. Note that if the control
flowwithin a shader diverges for simultaneously executed threads, the individual control paths
are processed sequentially, thus reducing the effective parallelism and utilization. Apart from
the ALUs, a core also comprises special-function units for evaluating transcendental functions
and 16 KB of so-called shared memory. Cores are further grouped to clusters, each additionally
featuring eight texture units for (tri-/bi-/linearly) filtered texture accesses.

As a concrete example, NVIDIA’s GeForce GTX 280 has 240 SPs, organized in 10 clusters of
three SMs each, which offer a peak computational power of 933 Gflops.The typically 1024 MB
of on-board graphics memory are accessed with a bandwidth of 142 GB/s. As this far exceeds
the performance achievable on a CPU, which is designed for rapid execution of a few primar-
ily sequential tasks, GPUs are increasingly employed for speeding up data-parallel workloads
beyond rendering (see Sec. 2.3).

A notable departure from the current situation, where the architecture of graphics hardware
closely matches a fixed graphics pipeline, is pursued by Intel’s upcoming Larrabee chip [349].
It is essentially a many-core processor with wide SIMD units, where fixed-function stages like
the rasterizer are implemented in software. Consequently, the whole pipeline becomes pro-
grammable and may be adapted flexibly to fit an application’s particular needs.

2.3 GPGPU and compute APIs

Given the huge computational power and high memory bandwidth offered by GPUs, it has
become attractive and desirable to harness these capabilities for data-parallel tasks other than
pure pipeline-based rendering. Initially, standard graphics APIs like OpenGL were utilized to
this end, forcing the programmer to express the task at hand as a rendering problem. One
standard technique that emerged is to store input data items into a texture, capture output data
items in the frame buffer, and render an appropriately sized quad, where the triggered pixel
shader computes each output item independently, using the input data. The output may then
serve as input for the next step. Such GPGPU (general-purpose computation onGPUs) efforts
led to the development of several solutions, like more complex GPU-suited data structures,
which are useful for rendering, too, enabling advanced computer graphics algorithms. A related
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survey, covering major techniques and example applications, is provided by Owens et al. [284].
For general data-parallel computing [282], however, having to access the computational

resources via a graphics API is cumbersome, incurs a certain overhead and may even be un-
necessarily restrictive. To address this issue, improve ease of use, increase achievable perfor-
mance and open up new markets, GPU vendors devised dedicated compute APIs. They no
longer follow the rendering pipeline but provide a hardware abstraction which exposes more
details about and additional capabilities of the GPUs compared to graphics APIs. In particular,
memory accesses aremore flexible, permitting to write tomultiple arbitrarymemory locations.
On the other hand, some available graphics-specific hardware units like the rasterizer are not
exposed and hence cannot be utilized. Note that limited interactionwith graphics APIs is possi-
ble by mapping buffer resources from a graphics API context into a compute program’s address
space. Unfortunately, at least with current drivers, the associated overhead can be considerable
and sometimes hence constitutes a severe obstacle to high overall performance.

Currently employed compute APIs like ATI Stream (comprising CAL and Brook+) [6],
which evolved from ATI’s CTM [5], and NVIDIA’s CUDA [273] are targeted specifically to the
hardware of the respective vendor, preventingwritten programs to run onGPUs from competi-
tors.This situation is alleviated by the upcoming industry standardOpenCL [185], aswell as the
introduction of compute shaders in Direct3D 11 [52]. In the latter case, shaders are designed to
interact smoothly with the standard rendering pipeline, using the same language (HLSL) and
resource types as the shaders in the programmable pipeline stages. Moreover, the pixel shader
stage is extended appropriately by allowing random-access memory writes for preparing input
to a compute shader.

In compute APIs, a kernel (or compute shader) encapsulates a certain computational task.
It is applied to a set of work items in parallel, launching one thread for each item.The items are
organized and indexed according to a multi-dimensional computation domain.This is further
structured intowork groups (also called thread groups or blocks), where all items in a group can
cooperate via shared group-local memory and group-wide synchronization operations. Note
that this inter-item communication possibility is very powerful and not exposed by graphics
APIs.

CUDA

Since CUDA is employed in Sec. 7.6, we provide somemore specific detail [270]. A work group
is called block in CUDA and all threads of a block are executed on the same SM. Each block is
further split into warps, with all 32 threads of a warp running in lock-step and hence automat-
ically being in sync.The 16 KB of fast SM-local shared memory are split among all blocks con-
currently assigned to a SM. A block’s fraction of this memory can be accessed by all threads of
the block, allowing communicating data between them. It is often employed as fast data cache,
where common data is first brought in from global memory collectively by several threads
which then operate on it. Multiple blocks are further structured in a grid, defining the compu-
tation domain.

Regarding memory accesses, each thread can perform uncached reads from and writes to
arbitrary locations in global memory. For maximum throughput, however, the concurrent ac-
cesses within a (half-)warp should allow of coalescing. It is also possible to perform cached
reads by resorting to textures. To exchange data with an OpenGL context, buffer objects can
be mapped to CUDA’s global memory. Finally, threads may access their block’s part of shared
memory for intra-block cooperation.
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Figure 2.3 Example of view-independent discrete geometric LOD.

2.4 Level-of-detail approaches

An important and often employed technique in real-time rendering is adapting the level of
detail (LOD) of scene elements to meet a certain budget, like limited memory resources and
especially maximum rendering time per frame. While it hence allows trading visual quality
for performance, it is also an effective means to avoid rendering excessive detail which cannot
be discerned anyway. Most notably, the geometric complexity and hence the triangle count of
objects are commonly reduced with increasing distance and decreasing screen-space extent.
This helps avoiding eventually rendering triangles of pixel- or even sub-pixel-size and thus
positively affects efficiency and attainable frame rate without (severely) compromising quality.

Normally, three different LOD types are distinguished. Whereas discrete LOD provides a
small number of different element versions of varying complexity, continuous LOD offers a
whole continuum of LODs, which enables fine changes in overall element complexity. A spe-
cial kind of continuous LOD is view-dependent LOD (or adaptive LOD), where local, selective
adaptations of detail are possible, e.g. at the silhouettes or in back-facing parts, allowing to take
the actual view into account.

Many LOD methods have been developed which are concerned with the geometric com-
plexity of single objects. Classical discrete LOD [74] employs a few automatically derived or
hand-crafted variants of decreasing triangle count for a certain model (see Fig. 2.3). Though
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still being widely used, this simple approach lacks flexibility compared to continuous [164]
and view-dependent LOD [165, 237, 405] techniques, where mesh complexity can be adapted
at a granularity of single triangles. However, since LOD is typically updated on the CPU and
graphics hardware excels when processing batches of geometry, operating on a triangle level
proves nowadays to be a severe performance bottleneck, unlike the situation when these meth-
ods [240] were devised. Consequently,more recent efforts adopt a coarser granularity andwork
on whole patches (chunks of triangles) [45, 72, 73, 322, 411], but also concentrate mainly on
huge models. Furthermore, representations other than triangle meshes are increasingly em-
ployed for coarser levels, as for instance voxels [140]. Yoon et al. [410] provide a current review
of related LOD approaches. Note that spurred by the growing flexibility of graphics hardware,
there is regained interest in fine-grained LOD adaptation with updates being executed entirely
on the GPU [168].

Ideally, switching amodel’s LOD should not be perceivable by the viewer. Otherwise annoy-
ing popping artifacts can arise, which hamper realism (see Chapter 10). One popular remedy
is to smooth the transition between two LODs, either by geomorphing [164] one triangle mesh
into the other, or by rendering both LODs and blending them in image space [139]. A recent
variant [329] of the latter approach renders just one (alternating) LOD per frame and com-
bines it with the rendering of the other LOD from the previous frame, typically copying the
pixel color from either one of the two LODs, with the selection proportion roughly matching
the blend factor.

Furthermore, several LOD schemes have been devised for aspects other than a single ob-
ject’s geometry. Cook et al. [79], for instance, deal with the aggregate detail induced by a large
number of elements, like encountered whenmodeling plants or hairs. Aiming at preserving the
aggregate’s appearance, in particular its area and contrast, their stochastic approach employs
only a subset of appropriately adapted elements for rendering. LOD methods also exist for ac-
quired material data, usually utilizing some multi-resolution representation [76, 243], as well
as for complex shaders [276, 277, 290]. Moreover, an image-space LOD approach for shader
execution [406] was devised, where expensive shading computations are performed at a lower
resolution and the results are subsequently upsampled to full resolution in a discontinuity-
respecting way.

One main driving factor for using LOD techniques is reducing (unnecessary) complexity
and computational load. However, they can also be useful to improve the visual quality by
avoiding or at least reducing aliasing. Note that ideally, a coarser LOD employed for a certain
view corresponds to an appropriately filtered version of the finest LOD. But to achieve this,
the necessary effort may actually increase compared to just using the finest LOD, conflicting
with the goal of reducing costs. Examples include methods for resolution-dependent surface
reflectance [154, 371, 372] and approaches for antialiasing shaders [382].

2.5 Kinds of realism

When images are synthesized in computer graphics, often the goal of realism is pursued. How-
ever, the notion of realism is rather fuzzy and may depend on the specific context. Addressing
this lack of a generally applicable and accepted definition, Ferwerda [124] identifies three va-
rieties of realism:

• Physical realism strives for creating an image which when displayed yields the same visual
stimulus as the represented real scene, that is, the same spatially varying (spectral) power
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distribution should be induced. This naturally requires an accurate definition of the scene
in terms of physical quantities and involves computationally expensive, physically-based
light transport simulations, making this kind of realism unsuitable for real-time rendering.
Moreover, (commodity) display devices are typically not capable of evoking the desired
power distribution.

• Usually, an image is produced to be viewed by a human user, who captures and further
processes it with the human visual system (see Chapter 8). Photo-realism accounts for this
and aims at inducing the same visual response as the depicted real scene. Consequently,
characteristics like the trichromatic encoding of spectral power distributions (colors), the
adaptation to varying illumination levels and colors, or the limited detectability of stimulus
deviations can be exploited. Note that an image which is considered indistinguishable from
a photograph of the scene may not necessarily be regarded as photo-realistic according
to Ferwerda’s definition, not least because a photograph can feature manifestations of the
camera’s optical system, like distortions and lens flare.

• Focusing on performing a visual task, functional realismmerely seeks to provide the same
visual information as the real scene to accomplish this job. Note that the degree of realism
is highly dependent on the task at hand and hence the purpose of the image. In partic-
ular, visual abstractions and illustrative rendering techniques can prove advantageous for
attaining a high functional realism.

Realistic real-time rendering typically targets some looser sort of photo-realism, where an
image should only appear as if it is photo-realistic but doesn’t actually need to be photo-realistic.
Most notably, deviations from a photo-realistic reference version which go unnoticed when the
image is viewed by itself but are clearly visiblewhen the reference is available for comparison are
usually deemed unproblematic. For instance, inconsistencies between the shape of a shadow
and the casting object or the light’s shape, distorted reflections on bumpy surfaces as well as
inaccurate refractions often remain undetected. This tolerance of the human visual system is
frequently exploited in real-time rendering as it allows cheaply approximating some effects
without affecting the perceived degree of realism.

To quantify to which degree deviations from a reference are possible while still inducing the
same scene appearance, some psychophysical experiments were conducted. Ramanarayanan
et al. [306] investigated how much blurring and warping of illumination maps is acceptable
depending on geometry bumpiness and material glossiness. They also studied how the com-
position of a complex aggregate of many objects, where perception focuses on the collection as
a whole instead of on individual objects, can be varied without affecting the appearance with
respect to numerosity, variety and arrangement [305].

In this thesis, when striving for realistic real-time rendering, we ultimately aim for photo-
realism. Note, however, that we only focus on some aspects at a time. For instance, when cover-
ing soft shadows in Part I, we try to accurately account for the influence of light-blocking scene
objects and the light’s extent on the shadow’s shape but completely ignore the contribution of
indirect illumination resulting from reflected light.
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CHAPTER 3

Overview of real-time soft shadows

Soft shadows are an important global effect that can significantly enhance the realism of ren-
dered scenes. It is hence highly desirable to support at least reasonable approximations of them
at real-time frame rates. In this chapter, we first discuss soft shadows in general, touching their
character, importance and resulting challenges. Subsequently, we provide a brief overview of
the multitude of approaches that have been devised for real-time rendering of (approximate)
soft shadows. The particular technique on which we mainly focused our work—soft shadow
mapping with occluder reconstruction and backprojection—is treated extensively in the fol-
lowing chapter, detailing our contributions. Finally, we review approaches which produce fairly
accurate soft shadows but currently only achieve at best interactive frame rates for more com-
plex scenes.

3.1 Soft shadows

When physical plausibility and global light transport are taken into account while rendering
a scene, the final color of a pixel is typically derived from the radiance1 L(p,ωcam(p)) at the
corresponding visible scene point p exiting in the direction towards the camera ωcam(p). The
radiance values may be determined by solving the rendering equation [175]

L(p,ω) = Le(p,ω) + ∫
S

fr(p,ω′ → ω) ⟨np,−ω′⟩sat ⟨nx ,ω′⟩sat∥p − x∥2 V(p, x) L(x,ω′) dAx , (3.1)

where we assume opaque objects for simplicity and hence employ the saturating dot product⟨a, b⟩sat =max(0, ⟨a, b⟩) to ensure non-negative cosine values. S denotes the set of all surfaces
in the scene, ω′ = ω′(p, x) is the (normalized) direction from point x to p, and ny designates
the surface normal at point y. Le(p,ω) is the radiance emitted from pwhile the integral collects
the radiance incident on p that gets reflected in direction ω, with the BRDF fr describing the
reflectance distribution. The binary visibility term V(p, x) equals one if x is visible from p, i.e.
the line segment connecting them is not intersected by any other scene elements; otherwise
V(p, x) = 0.

For reasons of clarity, we henceforth focus on a single light source and consider only direct
lighting, thus ignoring interreflections. Then, (3.1) simplifies to an integral over the set of all

1Radiance L is a radiometric quantity measuring the light energy per unit time and unit solid angle and unit
projected area.
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Figure 3.1 Geometry of soft shadow cast by a single linear/triangular occluder from a lin-
ear/rectangular light source onto a planar receiver.

light source surface points L, with L(x,ω′) = Le(x,ω′) for all x ∈ L:
L(p,ω) = ∫

L

fr(p,ω′ → ω) ⟨np,−ω′⟩sat ⟨nx ,ω′⟩sat∥p − x∥2 V(p, x) Le(x,ω′) dAx . (3.2)

Shadows result from light being blocked by some occluder. More formally, they occur at
scene pointsp fromwhich light points x are occluded by scene objects, i.e. where the setV(p) ={x ∈ L ∣ V(p, x) = 0} is non-empty. A major task in deriving shadows is hence determining
the visibility relations between the ordinary scene points and the light points.

Sometimes, shadows are further classified as cast shadows and attached shadows [187]. If
the surface at a point p is facing away from a light point x, no radiance is transferred between
them and the resulting shadow is called attached. Typically, such cases are easily dealt with
because the term ⟨np,−ω′⟩sat ⟨nx ,ω′⟩sat evaluates to zero.2 On the other hand, if p is facing
towards a light point x with V(p, x) = 0, the occurring shadow is said to be cast by some scene
object (the one which contains the point closest to x that lies on the line segment connecting
p and x). In case the shadow-casting object is different from the object to which p belongs,
the shadow is referred to as extrinsic shadow. Otherwise an intrinsic shadow is formed due to
self-shadowing.

To further discuss the geometry of shadows, consider the general setup in Fig. 3.1, where
a light source is partially blocked from a receiver by an occluder, that is, the occluder is casting
a shadow onto the receiver. Note that in case of self-shadowing, receiver and occluder are the
same object. RegionsU where the light source is completely hidden by the occluder and where
hence (3.2) yields L(p,ω) = 0 for all p ∈ U constitute the umbra. Points from which only a
part of the light source is visible form the penumbra. Together, umbra and penumbra regions
establish shadows. The remaining points are typically referred to as completely lit.

2Note that surfaces belong to objects of some thickness and hence there is always a point p′ in between p and x,
causing V(p, x) = 0. However, since the distance between p′ and pmay be arbitrarily small, numerical precision
and robustness problems can lead to wrongly indicating mutual visibility of p and x. Therefore, it is advantageous
that occlusion is already enforced by the saturating dot products becoming zero.
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Figure 3.2 Examples of soft shadows. They convey information about the direction of the
light source as well as about the spatial relationship of the scene objects. Notice how the shadow
cast by the street light hardens towards its pole’s contact with the ground (left). Also note that
even though the upper part of the tree is not visible, its shadow allows roughly inferring the
tree’s height and branch structure (right).

The size and shape of shadows as well as their partition into umbra regions and penumbrae
depend on the spatial extent of the light source. In the limit case of a point light, light visibility is
exclusively determined by the visibility of the sole light point and is hence of binary nature, i.e.
the light is either completely visible or entirely occluded but cannot be partially blocked.There-
fore, each appearing shadow comprises only an umbra but no penumbra. Due to this lack of
any intermediate degree of shadowing, such shadows are called hard shadows. Although point
lights are typically not encountered in reality, they are often employed in real-time rendering
because of their simplicity and the resulting savings in computational efforts.3 Most notably,
shadow determination only requires computing a single binary point-to-point visibility.

On the other hand, if the light has a real spatial extent (unlike a point), it may not just be
completely visible or invisible but also be partially visible. Consequently, occurring shadows
feature transition regions of partial illumination, the penumbrae. Because of these shadowing
gradients, they are referred to as soft shadows. Note that in some settings no visible point ex-
ists from which the light source is completely occluded, that is, soft shadows don’t necessarily
contain umbra regions. Extended light sources come in several flavors ranging from distant en-
vironmental lights defined by irradiancemaps to area lights. Typically, we consider only nearby
lights of simple shape, like rectangular or spherical light sources, not least because it is often
such lights which are responsible for producing visually dominating and distinctly recognizable
soft shadows.

Referring to the generic setting in Fig. 3.1 again, straightforward geometric considerations
show that as the size of a light source grows, a shadow’s penumbra region increases, while its
umbra shrinks and eventually even disappears. The part of the penumbra growing outwards
with respect to the umbra at point light size is sometimes called outer penumbra, while the

3It is tempting to consider a distant extended light source like the sun as a single point light. In many cases,
however, such an approximation negatively impacts realism because the actually cast shadows often would feature
small but still noticeable penumbra regions, i.e. they would not appear as completely hard—which contradicts the
point light assumption. It is also worth recalling that, as seen from earth, the sun still subtends a solid angle of
roughly 0.00006 sr.
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portion extending inwards and replacing the umbra is referred to as inner penumbra. Further-
more, keeping the light fixed but moving the occluder towards the receiver reduces the overall
shadow size and decreases the relative penumbra portion. A direct consequence is that if an
occluder touches a receiver, the cast shadow essentially only comprises an umbra at the region
of contact but with increasing distance becomes wider and dominated by a growing penumbra,
which ultimately may supersede the umbra completely.

Such shadow hardening on contact, like with the street light’s contact shadows in Fig. 3.2, is
an example of the important cues [245] provided by soft shadows and their significance for a
realistic appearance.They convey information about the shape of objects, like, for instance, the
size of lights, the silhouette of shadow-casting occluders, or the surface geometry of receivers.
Moreover, soft shadows offer cues concerning the spatial relationship of objects, eliminating or
at least reducing the ambiguity of relative placement. As further demonstrated by the examples
in Fig. 3.2, soft shadows are hence crucial for both realism and depth perception.

In typical scenes it often occurs that for a point in shadow the light is blocked by multiple
occluders, which may be different objects or distinct parts of the same object. The individual
regions of the light source hidden by these occluders can be disjoint or overlapping. In the latter
case, the solid angles covered by multiple occluders unite, effectively leading to an occluder
fusion.

Challenges for real-time rendering

Over time, many algorithms have been devised for rendering both hard and soft shadows.The
somewhat outdated surveys by Woo et al. [402] and Hasenfratz et al. [159] provide a compre-
hensive overview of related methods. More recent developments are briefly reviewed in the
next sections. In general, rendering of soft shadows poses many challenges, especially when
real-time frame rates are aimed for.

Typically, only direct illumination is considered. Moreover, to save computations, the cor-
responding lighting equation (3.2) is usually simplified by assuming terms like the BRDF to be
constant, evaluating them just for one predominant direction towards the light source. There-
fore, only the visibility V(p, x) and, if non-uniform, textured light sources are to be supported,
the light’s emitted radiance Le(x,ω′) are actually integrated over the light area. Such an approx-
imation is justified because soft shadows directly result from spatially varying light visibility,
whereas the ignored changes in the remaining terms usually are visually less important and
dominant, especially for diffuse receivers and reasonably sized lights. It is also questionable
whether these missed shading variations have a larger impact on realism than indirect illumi-
nation, which is completely omitted.

Consequently, central to computing soft shadows is determining the fraction of the light
area that is visible from a scene point. However, accurately answering point-to-region visibility
queries is expensive for more complex scenes. While graphics hardware has reached a tremen-
dous computational power, in order to obtain real-time performance current algorithms still
have to resort to imposing constraints on the scene that enable simplifications and precomputa-
tions, or to introducing approximations. This typically incurs some limitations, like restricting
the support for dynamic changes, requiring large amounts of memory, and settling for a (hope-
fully) good estimate of light visibility. For instance, to keep the number of occluders processed
per pixel reasonably low, only a subset of the potential occluders may be considered. A related
challenge is ensuring temporal coherence for the produced soft shadows, especially if the ap-
proximations involve some dynamic sampling.
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Since visibility is a non-local problem, information about the scene geometry must be
made available to the shaders computing the soft shadows. There are two general approaches
to achieve this. On the one hand, an explicit scene representation may be constructed and pro-
vided to all fragments. In many cases this is just a shadow map offering a point sampling of
some of the occluders, but in principle one may also utilize a spatial structure like a kd-tree
filled with the scene triangles or a subset of them. Alternatively, scene information can be dis-
tributed implicitly by successively issuing primitives describing the scene geometry such that
each causes the visibility data of the affected pixels to be updated accordingly. Examples include
wedges corresponding to silhouette edges and polygonal footprints of scene triangles. Typically,
each such primitive conservatively covers the influenced pixels, and for each generated frag-
ment the stencil buffer is adjusted or the output of the triggered pixel shader gets blended into
some buffer representing the current light visibility. In finding a suitable way to convey global
scene information, issues like generation time and required storage space but also ease of oc-
cluder processing have to be dealt with. Moreover, employing acceleration structures may be
worthwhile if the gained savings exceed the involved building costs.

A major challenge is how to correctly handle occluder fusion because each occluder is pro-
cessed individually but the regions of the light source hidden by them may overlap. Conse-
quently, computing the visibility integral (potentially weighted by a light texture) for each oc-
cluder and then simply compositing the resulting visibility values is merely a fast approxima-
tion which generally doesn’t yield correct results. By contrast, we have to maintain information
about the light regions blocked by occluders, update it for each occluder, and only in a final step
compute the visibility integral, accounting for all processed occluders. However, given the con-
straints of graphics hardware and the aim for real-time frame rates, representing and combining
region information on a pixel level is non-trivial. Therefore, only recently robust solutions to
occluder fusion have been devised for interactive and real-time rendering. They all essentially
follow our approach [333], which, to the best of our knowledge, was the first one published.4 It
is discussed in more detail in Sec. 4.2.

3.2 Real-time approaches

A large variety of algorithms have been developed for rendering (approximate) soft shadows
at real-time frame rates. One major class of them utilizes an image-based representation of
the considered occluding scene objects; such approaches are covered in Sec. 3.2.1. By contrast,
geometry-based methods employ explicit geometric primitives for each processed occluder to
derive the soft shadows (Sec. 3.2.2). Moreover, some hybrid approaches exist (Sec. 3.2.3).

Another line of distinction is between algorithms merely striving for visually plausible soft
shadows and those aiming at more physical correctness. While the first class typically makes
crude approximations, like extending hard shadows by outer penumbrae, the latter approaches
usually project occluders onto the light area to more accurately determine light visibility. It is
worth noting that especially such physically plausible algorithms are often the result of adapta-
tions of CPU-based off-line algorithmsmade possible by increases in the computational power
and programmability of GPUs.

Unless otherwise noted, all techniques presented in the following target soft shadows pro-
duced by reasonably sized spherical or rectangular area light sources.

4A different technique presenting basically the same underlying idea was developed concurrently by Eisemann
and Décoret [107] and presented at the same venue as our approach.
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3.2.1 Image-based approaches

Image-based approaches to soft shadow rendering typically extend standard shadow map-
ping [347, 398] for hard shadows. Here, the scene is rendered from a light point x into a depth
map, recording the scene objects visible to x.This shadowmap thus captures the occluders clos-
est to the considered light point. To determine whether a point p is in shadow, it is transformed
into shadow map space and compared against the related shadow map entry. If this element’s
depth is smaller, it is closer to the light point than p and hence occludes x from p.

Note that the sampling of the scene performed by the shadow map differs from that of the
view camera, leading to aliasing problems. In particular, fine structures may be missed and
silhouettes are easily captured at a too coarse resolution. Moreover, biasing of the depth values
recorded in the shadow map is required to avoid surface acne artifacts due to incorrect self-
shadowing. While many techniques have been developed to address these shortcomings for
hard shadows (Lloyd et al. [225] provide an overview), they are beyond our scope, not least
because they are often not directly applicable to related soft shadow algorithms.

On the other hand, image-based algorithms offer several advantages. First, current graph-
ics hardware features direct support for both the generation and the query of shadow maps.
Second, they typically scale better with scene complexity than geometry-based approaches.
Third, such methods can readily deal with geometry altered in the pixel shader stage via alpha
masking, pixel kills or depth modifications. Especially the selective discarding of fragments is
fundamental to many recent techniques for raycasting surfaces (cf. Secs. 6.4.1 and 6.5.2) and
for adapting the silhouette in per-pixel displacement mapping algorithms [68, 278].

Plausible faking by adapting hard shadows

Many early techniques which try to fake soft shadows in a plausible way are based on the idea
of starting with the hard shadow obtained for a point light source placed at the center of the
extended light and enlarge it outwards to generate a penumbra region [287]. Brabec and Sei-
del [53] search a shadowmap for the nearest texel containing depth information of an occluder
and use both the distance to the corresponding texel and the read depth value to estimate a
pixel’s placement within the found occluder’s soft shadow, thus adding outer penumbrae and
replacing some hard shadows by inner penumbrae. In similar work, Kirsch and Döllner [186]
move all involved computations to the GPU but become further restricted to handle only in-
ner penumbrae. By contrast, Arvo et al. [14] create outer and inner penumbrae by applying
a modified flood-fill algorithm in screen space to the umbra regions obtained from a shadow
map.

All algorithms of this class suffer from several inherent limitations which often lead to
clearly visible artifacts. For instance, since the search radius is usually bounded and only the oc-
cluders closest in shadow map space are found, relevant occluders might get ignored, limiting
the penumbra’s extent and causing transition artifacts. Moreover, the umbra regions are often
significantly overestimated, especially with techniques only accounting for outer penumbrae.

Blurring of hard shadowmap results

Another related option is to simply blur hard shadows via percentage-closer filtering (PCF) [311].
Here, a scene point is not just compared against its corresponding shadowmap entry but to all
texels within a certain neighborhood.The binary results are then averaged to yield a percentage
value estimating light visibility. Non-extremal values effect penumbra regions, whose extents
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depend on the size of the considered PCF kernel relative to the shadow map resolution. To
better account for varying penumbra widths, for each fragment, Fernando [122] searches the
shadow map for entries closer to the light and utilizes the average depth of the found potential
occluders to dynamically compute the kernel size for the filtering step.

While the attained results with these percentage-closer soft shadows (PCSS) are often visu-
ally pleasing, at least for simple settings, the approach suffers from several shortcomings. For
instance, it assumes a single planar occluder parallel to the shadow map’s near plane, which is
not always a good approximation. Moreover, when processing shadowmap samples, occluders
are identified by just checking whether a recorded point is closer to the light than the point p
corresponding to the current fragment. Consequently, shadow map entries which are outside
the point–light pyramid (with apex p and the area light as base) and hence don’t block the light
at all from pmay bewrongly considered as occluders.This can lead to incorrect estimates of the
average depth of the relevant occluders, as well as to wrong visibility values—even if the single
planar occluder assumption holds. Another major obstacle is that both searching the shadow
map for occluders as well as performing percentage-closer filtering requires many shadowmap
accesses, thus limiting the achievable performance.

The PCF overhead can be significantly reduced by resorting to alternative shadowmap rep-
resentations that allowprefiltering.Note that arbitrary rectangular filter sizesmay then easily be
supported by constructing a corresponding summed-area table [83, 206]. One class records a
concise description per texel of the distribution of depth samples, which can be filtered directly,
and then derives light visibility for each fragment by applying statistical estimation formulae.
The first such approach were variance shadow maps [95], which store the first two moments
of linear depth and employ Chebyshev’s inequality. However, since this only yields an upper
bound on the probability that a point is farther away from the light, and hence on the percent-
age of shadowmap samples farther away, variance shadowmaps are prone to light bleeding arti-
facts, where parts of the shadow interior are too bright. Other related methods include warped
variance shadow maps [207], approximate cumulative distribution function shadow maps [145],
and exponential shadow maps [321].

Alternatively, the depth comparison of shadow map entries with a scene point p may be
approximately decomposed into terms depending only on the shadow map depth values or
only on p, respectively, again enabling prefiltering.Convolution shadowmaps [12] use a Fourier
series expansion, while exponential shadow maps [13] employ exponential factors. The same
approach can also be applied to derive the average occluder depth [11], thus largely removing
the overhead of the occluder search step, too.

Reconstructing and backprojecting occluders

Aiming at physically plausible soft shadows for rectangular area lights, an important group of
algorithms employs a shadow map obtained from the light source’s center and reconstructs
potential occluders in world space from it. These are then backprojected from the currently
considered scene point p onto the light’s plane to estimate the visible fraction of the light area.
Note that our techniques, further detailed in the next two chapters, belong to this class. The
various methods mainly differ in what kind of occluder approximation is employed, how the
computations are organized, and how the occluded light area is derived. Among others, these
choices directly influence performance, generality, robustness and visual quality.

Many approaches just adopt shadow map texels unprojected into world space as micro-
occluders [17, 19, 31, 147]. However, gaps in the occluder reconstruction may emerge, which
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lead to visible light leaks. This can be alleviated by extending each micro-occluder to its neigh-
bors in texture space [147]. Another remedy suggested is to employ a multi-layered shadow
map generated via depth peeling [111, 246], but to only consider for each texel the farthest
micro-occluder still closer to the light than p [30]. Alternatively, one may construct larger oc-
cluders by extracting contours from the shadow map [148]. We developed a different kind of
micro-occluder [333, 335], which implicitly avoids gaps and is also less prone to surface acne
artifacts.

Concerning the order of computation, Atty et al. [19] loop over all micro-occluders and
scatter the occlusion caused by them to all affected pixels in a soft shadow map, which finally
gets projected onto the scene. While this approach is of high efficiency, it requires a separation
of objects into shadow casters and shadow receivers. Other approaches don’t suffer from this
limitation because they adopt a gathering strategy, where for each processed scene point p
all relevant occluder approximations are extracted from the shadow map and backprojected
to derive light visibility. Apart from enumerating all shadow map texels within a search area
determined by the intersection of the point–light-area pyramid and the near plane used for
shadowmap generation [17, 147], onemay instead just sample according to a Gaussian Poisson
distribution [31] or even perform regular subsampling [30]. To keep the number of processed
occluders not actually hiding the light from p low, the search area can be tightened by means
of an acceleration structure [147]. The multi-scale representations devised by us [333, 336] are
very effective in this regard, often significantly improving performance. Yet another option for
iterating over relevant occluders is to hierarchically traverse a min/max mipmap pyramid of
the shadow map [93].

Light visibility is typically computed by summing up the light areas covered by the backpro-
jected occluders. Similarly, the relative solid angles covered by the micro-occluders’ bounding
spheres may be added up [31]. However, the backprojections and solid angles, respectively, of-
ten overlap, causing light occlusion to be overestimated, which in turn can lead to objectionable
artifacts. We developed a robust solution to the underlying occlusion fusion problem, namely
by tracking the visibility of light sample points with an occlusion bitmask [333]. This not only
prevents overlapping artifacts but also enables including occluders from further shadowmaps.

Real-time performancemay necessitate enforcing an upper bound on the number ofmicro-
occluders considered per fragment. Apart from subsampling [30, 31], one solution is to em-
ploy a coarser minimummipmap level of the shadow map for extracting occluder approxima-
tions [147]. Related light-space and screen-space multi-resolution approaches are presented
by Guennebaud et al. [148], which, however, suffer from robustness and visual quality prob-
lems. We investigated several aspects of having to cope with a restricted time budget, like
smooth spatial variation of soft shadow quality and corresponding local adaptation of com-
putational efforts, coarser-level occluder approximations, and cheap support for multisample
rendering [336].

Chapter 4 provides more detail about this class of algorithms, commonly referred to as
soft shadow mapping approaches. The main focus is put on our contributions, including accu-
rate occlusion combination and hence correct occluder fusion handling, effective acceleration
structures, as well as improved occluder approximations. These enable high visual quality at
real-time frame rates and make soft shadow mapping an attractive candidate for rendering
physically plausible soft shadows.
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Multi-layered approaches

While a single shadow map only captures the occluders closest to a dedicated light point x,
several approaches exist which take further samples along the corresponding rays emanating
from x into account. One class generates shadow maps from several points on the light source
andmerges them into a single extended shadowmap for the light center. For instance, Agrawala
et al. [7] employ layered depth images [352] as representation for their layered attenuation
maps, recording samples visible from any of the considered light points, whereas St-Amour et
al. [362] adopt deep shadowmaps [226], storing occlusion as a function of depth for each texel.
Although such methods allow rendering rather accurate soft shadows in real time once the ex-
tended shadowmap has been created, the generation of this structure is typically only possible
at interactive rates, at best. In particular, high quality usually requires considering many light
sample points and thus acquiring and incorporating a large number of shadow maps.

A different and cheaper algorithm is suggested by Eisemann and Décoret [106, 108]. They
establish planes parallel to the area light and, within each resulting slice, project the scene ge-
ometry away from the light source onto the slice’s far plane, recording the covered parts in a
(binary) occlusion texture. A convolution of this characteristic function with a suitably scaled
light source kernel approximately determines the percentage of light blocked by the occluders
in a slice [361]. Exploiting this observation, occlusion textures are first prefiltered and then ap-
propriately combined for each fragment to derive light visibility. While the method is fast and
often provides visually pleasing soft shadows, the conversion into planar occluders at a small
number of light distances can lead to artifacts. For instance, light occlusion due to blockers
within the same slice as the point to be shaded may be missed or underestimated.

3.2.2 Geometry-based approaches

Although image-based approaches have many advantages, like readily supporting versatile ge-
ometry rendering techniques beyond triangle meshes, they inherently suffer from limitations
due to the involved sampling in shadowmap space, resulting in aliasing problems. Moreover, a
shadowmap typically only captures a subset of the occluders andmay provide a poor sampling
of surfaces almost normal to the shadow map’s near plane.

By contrast, geometry-based approaches utilize an explicit representation of the occluder
geometry to derive light visibility. It is thus possible to consider all occluders and avoid aliasing
problems. On the downside, such algorithms are typically slower than image-based methods
and more susceptible to the occluder fusion problem because not just the blockers closest to
the light are processed. Only recently, techniques have been devised that effectively address the
latter issue, yielding pretty accurate soft shadows. Unfortunately, these currently don’t run at
real-time frame rates except for simple scenes. They are briefly covered in Sec. 3.3.

Soft shadow volumes

Several approaches generalize shadow volumes [82, 162] developed for hard shadows. In this
method, first silhouettes with respect to a point light are identified. Subsequently, a volume is
constructed for each silhouette by extruding its edges along the direction away from the light.
Noting that a point is in shadow if it is enclosed by at least one volume, an according counter is
kept for each pixel (typically in the stencil buffer).Then, the shadow volumes are rendered, with
the counter being increased for front-facing faces of the volume and decreased for back-facing
ones. While accurate, this algorithm is fill-rate intensive and requires extracting silhouettes.
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A corresponding extension for soft shadows was introduced by Assarsson and Akenine-
Möller [15, 16]. They determine silhouettes as seen from the center of the light source and
render a penumbra wedge for each silhouette edge.The triggered pixel shader projects the edge
onto the light source and determines the covered area of the according radial section. These
areas are accumulated and used to modulate a visibility buffer initialized by a standard shadow
volume pass. The resulting soft shadows are of rather high quality if the following conditions
are met. First, the used silhouette edges have to be roughly identical to those seen from other
points on the light source. As a direct consequence, soft shadows produced for large area lights
are typically not very accurate. Second, it is necessary that the silhouettes’ projections onto the
light area don’t overlap, precluding common setups where occluder fusion occurs.

To somewhat alleviate the latter limitation, Forest et al. [130] suggest keeping track not only
of the covered area but also maintaining a bounding box of the occluded regions for each quar-
ter of the light source.This allows detecting potential overlaps and estimating their magnitude,
but due to the looseness and coarseness of the approximations it doesn’t provide a robust and
satisfactory solution to handling overlapping silhouette projections.

3.2.3 Hybrid approaches

Apart from approaches exclusively using either image-based occluder representations or ac-
curate object-space geometric information, respectively, some hybrid algorithms exist which
operate in image space but also take explicit object information into account. They typically
use a standard shadow map to identify an initial umbra region, and render extra geometry for
the silhouette edges into a further texture to handle penumbra regions.

Attenuating geometry attached to silhouettes

Chan and Durand [66] fake soft shadows by augmenting hard shadows with outer penumbrae.
They extrude the silhouettes parallel to the shadow map’s near plane by a global user-specified
amount with quadrilaterals.These so-called smoothies are assigned a visibility gradient that in-
creases outwards from the silhouettes.They are rendered from the light’s center into a smoothie
buffer, which is then used to attenuate pixels, creating the illusion of penumbrae. While the
method adapts the penumbra width according to the relative placement of the occluder with
respect to the light and the receiver, the radius of the assumed spherical light is ignored. In a
similar approach, Wyman and Hansen [404] account for the light size by constructing a cone
for each silhouette vertex and a sheet connecting adjacent cones for each silhouette edge. This
auxiliary geometry is rendered into a penumbra map from the center of the light, again estab-
lishing soft-shadow-like gradients emanating from the silhouettes that are used to augment
hard shadows.

Since bothmethods produce only outer penumbrae, the resulting soft shadows often appear
too dark. To alleviate this, Cai et al. [59] attach not only outer fins to silhouette edges but also
inner fins, and generate separate penumbra maps for them. However, since inner penumbrae
are realized by brightening hard shadows according to the inner penumbra map, light leaking
problems occur if multiple occluders overlap.This can be alleviated by decomposing the scene
into multiple layers and creating layer-specific penumbra maps. Nevertheless, artifacts due to
overlapping fins may still occur. Also note that while often visually plausible, adding inner and
outer penumbrae is only an approximation.



CHAPTER 3 Overview of real-time soft shadows 25

Using a non-pinhole light camera

A rather different approach is pursued by Mo et al. [253]. They employ a non-pinhole camera
positioned at the light center x to also capture surfaces in the penumbra region normally hidden
from x.This soft shadow occlusion camera effectively bends camera rays at depth discontinuities,
thus looking around occluder silhouettes. The corresponding distortion of the camera image
in the vicinity of silhouettes is described by a distortion map. It is created by extruding silhou-
ette edges parallel to the near plane and rendering the resulting quads into the map. Instead of
actually rendering the scene with this camera, the computed distortion is directly employed to
derive a point’s placement within the penumbra.While interesting, this method only works for
relatively small lights and suffers from artifacts if extruded silhouette edges overlap in the dis-
tortion map. Indeed, essentially all published example images show clearly noticeable artifacts,
precluding visually pleasing results.

3.2.4 Approaches for low-frequency environmental lights

Although we concentrate on shadows cast by small area light sources, it is worth noting that
some real-time object-space algorithms exist for large low-frequency light sources like envi-
ronment maps. They typically represent both incident radiance as well as light visibility as a
directional function in the spherical harmonics (SH) basis. Note that because visibility is a
high-frequency signal due to its binary nature, a projection into the SH basis always incurs an
approximation error and causes smoothing.

Mainly targeting articulated characters, Ren et al. [313] first construct a hierarchical sphere
set approximation for each scene object in a preprocess. During runtime, visibility is deter-
mined by accumulating the occlusion due to the spheres. Since each sphere covers a circular
solid angle, a corresponding generic pretabulated SH projection can easily be utilized. By mul-
tiplying the resulting visibility functions for the single spheres (or adding them in log space),
correct occluder fusion is performed, albeit the low-frequency nature of the SH representa-
tion prevents accurate results. Sloan et al. [359] later improved the method and extended it to
incorporate indirect lighting.

While the sphere approximation and the choice of the SH basis enable real-time perfor-
mance, they also cause unrealistic and missing shadows in locations where rather higher fre-
quencies occur, e.g. where a box touches the ground. In particular, contact shadows are of-
ten wrongly shaped and partially lose their contact, which is suboptimal, since they constitute
visually important features [376]. This inaccuracy would become especially noticeable if the
environmental light featured a small region of high radiance, like the sun.

By contrast, such key lights are explicitly supported by Snyder and Nowrouzezahrai [360]
who consider the special case of shadowing dynamic height fields. They approximate the hori-
zon blocking the environmental light by visibility wedges and utilize pretabulated SH projec-
tions for them to determine the overall visibility.

3.2.5 Discussion

Summing up, one major class of algorithms for rendering soft shadows at real-time frame rates
seeks only or at least primarily for visual plausibility.This comprises mainly earlier approaches
developed for older graphics hardware aswell as recentmethods striving for simplicity andhigh
speed, like the ones blurring hard shadowmaps. Generally, such algorithms resort to heuristics
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like adding outer and inner penumbrae to hard shadows and sometimes even ignore the actual
light size.

Many other techniques, especially more recent ones, try to approximately determine phys-
ically correct shadowing. To obtain accurate soft shadows, a rather exact knowledge is required
about the fraction of the light source’s area that is visible from a point to be shaded. In principle,
two approaches exist for computing this point-to-region visibility. The first option is to sample
the light source’s surface and determine the resulting shading-point-to-light-point visibility re-
lations. Overall light visibility is then obtained by averaging these binary results. Note that our
method for correctly handling occluder fusion adopts such a strategy (see Sec. 4.2). Moreover,
almost all more recent quasi-interactive algorithms for accurate soft shadows, covered in the
next section, follow this approach.

Alternatively, regions of the light covered by the projections of the occluding geometry
onto the light source area may be combined to determine exact light visibility. Maintaining
and merging such region information, however, is non-trivial, and therefore, typically approx-
imations are made, like representing visibility in the SH basis. While this still enables properly
accounting for occluder fusion, the simple method of just summing up the areas of the projec-
tions is not able to correctly handle overlaps.

It is interesting to note that often essentially a visibility image of the light source surface
is produced. A straightforward way to generate it for a certain point to be shaded is to render
the scene from this point, focusing the frustum onto the light source. Since this has to be done
for each visible scene point, the approach is far too expensive if the rendering is performed
explicitly into a separate color buffer for each point. Therefore, sample-based methods usually
maintain a per-fragment bit field to store a low-resolution binary image. Other algorithms op-
erate solely on a single visibility percentage value, i.e. on a real-valued visibility image of size
1×1, but cannot correctly perform occluder fusion. Typically, the visibility image is then cre-
ated by successively projecting potential occluders onto the light source, updating the image
to incorporate the according occlusion regions. Real-time performance often also demands to
consider only a sparse set of potential occluders for deriving the visibility of the light source.

3.3 Quasi-interactive approaches for accurate soft shadows

While all real-time algorithms discussed so far generate only approximate soft shadows, several
approaches exist which can produce accurate soft shadows.On current hardware, however, they
only achieve at best interactive frame rates for more complex scenes.

Most of them tackle the visibility problem by placing sample points on the light source and
computing the resulting binary point-to-point visibility relations. A related straightforward
method, which we employed for obtaining reference images, is to acquire a shadow map for
each light sample point and average the resulting hard shadows [161]. Note that due to the
different sampling of the scene, care is necessary to avoid surface acne and aliasing problems.

Backprojecting silhouettes

Soft shadow volumes as presented above in Sec. 3.2.2 were later adopted for off-line raytrac-
ing and appropriately extended to generate accurate soft shadows [203, 214]. Most notably,
penumbra wedges are constructed not just for silhouettes as seen from the light center but for
all edges constituting a silhouette from some point on the light. Moreover, instead of adding
up the light areas occluded by silhouette loops, many light sample points are considered. For



CHAPTER 3 Overview of real-time soft shadows 27

each such point, a counter stores the number of silhouette loops whose projections enclose the
point. From these relative depth complexity values, the binary light-point visibilities can be
derived by casting one ray to any sample point with the smallest counter value.

Forest et al. [131] adapt this improved variant to rasterization-based rendering with graph-
ics hardware. They initialize the depth complexity counters with a standard shadow volume
pass and update them by successively rendering a penumbra wedge for each considered sil-
houette edge. The invoked pixel shader determines the affected light sample points via texture
lookups and outputs the corresponding counter changes. With the counters being stored in
multiple color buffers, additive blending incorporates these updates. As the number of render
targets is limited, several counters are packed into a single color channel. Nevertheless, only a
rather small number of light sample points (usually 64) is supported within a single rendering
pass, causing soft shadows to be quite noisy unless interleaved sampling [182, 348] is utilized,
which, however, leads to some banding artifacts. Moreover, counters may overflow and nu-
merical robustness problems seem to arise, making many example images suffer from quite
noticeable artifacts, like single bright pixels within shadows.

Backprojecting triangles

Alternative approaches avoid silhouette extraction and require only maintaining a single bit
per light sample point, storing binary visibility. Instead of operating on silhouettes, they loop
over all triangles of potential occluders. For each triangle and receiver point p, the bitmask
corresponding to the occluded light points is determined and incorporated into the bit field
encoding the sample points’ visibility at p via a bitwise or operation. Note that our real-time
method pursues exactly this approach, but works on micro-occluders extracted from shadow
maps instead of on scene triangles.

An effective strategy to realize such a procedure for arbitrarily distributed blocker triangles
is to scatter the occlusion due to each triangle to all affected receiver points. It was first proposed
by Laine and Aila [202] within an off-line algorithm, where a hierarchical structure is used to
quickly identify the shadowed receiver points (corresponding to pixel centers).

Adapting the approach to rasterization-based rendering, Eisemann and Décoret [107] re-
strict themselves to a planar receiver. For each triangle, a bounding box is rendered that con-
servatively covers the triangle’s influence region, i.e. the set of potentially affected points on
the receiver. The triggered pixel shader determines the bitmask designating the light samples
occluded by the triangle by consulting a look-up texture. Utilizing logical pixel operations
(only supported by OpenGL), these bitmasks are accumulated in multiple integer-valued color
buffers. While yielding accurate soft shadows, this algorithm only supports planar and some
bumpy shadow receivers and doesn’t account for self-shadowing.

Addressing these shortcomings, Sintorn et al. [358] improved and extended the method.
They first transform the scene points visible from the camera into shadow map space (for the
light center) and store them in an alias-free shadowmap, where each texel maintains a list of re-
ceiver pointsmapped to this shadowmap entry. Subsequently, a hexagon is rendered in shadow
map space for each triangle, conservatively covering the affected receiver points. Note that each
created fragment corresponds to a shadow map texel and hence has access to the related list of
receiver points. Traversing this list, the launched pixel shader derives for each receiver point a
bitmask capturing the occlusion due to the currently processed blocker triangle. Again, these
bitmasks are accumulated in multiple buffers. However, since the number of bound render tar-
gets is restricted, only a fixed number of receiver points can be considered for each texel within
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a single rendering pass, often requiring multiple passes to completely process the per-texel lists
of receiver points. Not least because of this, the algorithm doesn’t achieve real-time frame rates
yet except for some simple setups featuring a small light source and a low scene triangle count.
However, the produced soft shadows are accurate and of high visual quality.

Beam tracing

While all these methods only compute a sampling of light visibility, some approaches explicitly
derive the (non-overlapping) regions of the light source occluded by scene geometry, allowing
exactly determining visibility. However, the complexity of handling and updating such region
information makes them expensive and causes a GPU-based realization to not appear reason-
able (yet). On the other hand, several CPU-based techniques exist. For instance, Overbeck
et al. [281] describe a fast CPU-based beam tracer [160]. Here, a (pyramidal) beam is cast from
each receiver point to the triangular or quadrilateral area light. Each time a scene triangle is
hit by the beam, the beam is split, cutting out sub-beams hitting the triangle and leaving sub-
beams missing the triangle. Eventually, the union of all miss sub-beams identifies the visible
part of the light source. Note that performance degrades for highly tessellated scenes as a beam
potentially undergoes many splits.



CHAPTER 4

Soft shadowmapping with occluder
backprojection

Rendering soft shadows greatly helps realism but for real-time performance currently approxi-
mations are still necessary. Of themanymethods reviewed in the last chapter, a prime candidate
is the soft shadow mapping approach, where an approximation of the occluder geometry, con-
structed from a shadowmap, is backprojected onto the light source to determine light visibility.
This image-based technique features the desirable properties of yielding physically plausible
soft shadows and being simple enough to allow fast execution. On the other hand, the basic
algorithm suffers from several shortcomings which in general preclude high visual quality and
keep down the achievable frame rate due to performing unnecessary work. Addressing and al-
leviating these weaknesses, we developed various solutions which make soft shadow mapping
a practical method for delivering high-quality physically plausible soft shadows in real time.

In this chapter, we first review the basic soft shadow mapping approach and then describe
our contributions in detail. These typically concern orthogonal aspects, and hence may be
adopted independently. In particular, they can selectively be applied to and mixed with al-
ternative methods. At first, we deal with visibility determination and present our technique for
solving the important occluder fusion problem within real-time rendering. Note that, while
introduced in the context of soft shadow mapping, our solution is also valid for and applicable
to other approaches for rendering soft shadows.

Subsequently, we cover acceleration structures which help to effectively restrict computa-
tions to relevant occluders. Our hybrid shadow map incurs little overhead but significantly
reduces the required processing effort, thus considerably speeding up rendering. The follow-
ing two sections are dedicated to occluder approximations derived from a shadow map. The
introduced approaches often produce improved reconstructions of the occluder geometry, en-
hancing visual quality. Finally, we describe a simple visibility interpolation scheme enabling
multisample support at negligible extra costs, before concluding the chapter with results.

4.1 Basic approach

Recall from Sec. 3.2.1 that soft shadowmapping comprises a whole group of algorithms which
follow the same general idea but differ in how they implement it. In the following, we con-
centrate on the variant introduced by Guennebaud et al. [147]. Note that most other algo-
rithms [17, 31] are pretty similar to it, except the initial, occluder-driven method by Atty et

29



30 4.1 Basic approach

Texel

Back-
projectionLight

p

Unprojected
micropatch

Shadow
map

Extension

Light leak

Search area
zmin

(a) Basic overview (b) Combating light leaks (c) Search area determination

Figure 4.1 (a) Basic soft shadow mapping derives occluder approximations by unprojecting
shadowmap texels intoworld space, and backprojects thesemicropatches onto the light source,
accumulating the occluded areas, to determine its visibility from a point p. (b) Gaps emerging
in the reconstruction of blockers can cause light leaks and are (approximately) closed via mi-
cropatch extension. (c) To process only relevant occluders, a conservative search area in the
shadow map is determined by exploiting knowledge about the minimum depth value zmin in
(a region of) the shadow map.

al. [19], which, however, requires distinguishing between shadow casters and shadow receivers,
thus ignoring self-shadowing. Like for many other versions [30, 93, 148] too, the presented ba-
sic approach serves as foundation for our contributions detailed in the subsequent sections.
While at least our method could deal with arbitrarily shaped planar light sources, we restrict
ourselves to rectangular area lights.

At first, a standard shadow map is generated from the center of the extended light source.1
This depth map provides a point sampling of the scene geometry visible from the light cen-
ter, and hence a representation of a subset of the occluders. An approximation of the captured
geometry is generated by constructing a micro-occluder for each shadow map element. Typi-
cally, the whole texel is just unprojected into world space, resulting in a rectangularmicropatch
parallel to the shadowmap’s near plane, as illustrated in Fig. 4.1 a. Alternative occluder approx-
imations are discussed in Sec. 4.4.

The light visibility and hence the degree of shadowing is computed in a pixel shader, either
as part of the shading calculation during rendering the scene objects or within a separate pass
in a deferred shading setup [91, 157]. For each fragment with associated scene point p, the
shadow map is traversed, constructing a micropatch on the fly for each texel. If a micropatch
is closer to the light source than p, it potentially blocks some part of the light. In this case,
the micropatch is backprojected from p onto the light plane and clipped against the light’s
extent to determine the occluded light area. Note that clipping and area computation are simple
operations because the micropatch’s projection constitutes an axis-aligned rectangle in light
plane space. The individual covered light areas of all backprojected micropatches are summed
up to get an estimate of the overall occluded light area. Relating this to the total light area yields
a visibility factor describing the percentage of light visible to p.

1In principle, any sample point on (or behind) the light source may be used instead of the center.
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Instead of naively looping over all texels, ideally only those micro-occluders are processed
for a certain fragment which actually project onto the light source and hence block some light.
A corresponding rectangular shadow map search area encompassing these relevant micro-
occluders is given by intersecting the shadow map’s near plane with the point–light pyramid
defined by the point p and the rectangular area light. This conservative first estimate can be
further tightened if the depth range [zmin, zmax] of the samples within the search area is known.
By intersecting the plane z = zmin with the pyramid and projecting the result onto the near
plane, the search area may then be refined iteratively (see Fig. 4.1 c). Knowledge about the
depth range of the search area further allows identifying fragments in umbra and completely
lit regions, where no micro-occluders need to be processed at all. More precisely, if zp > zmax
holds, where zp denotes the shadow map depth value for point p, it can safely be assumed that
the light is totally blocked.2 Similarly, zp ≤ zmin ensures that the whole light source is visible.

To quickly determine the depth range of a shadow map area, an acceleration structure is
used. The hierarchical shadow map (HSM) [147], which essentially equals a hierarchical z-
buffer [142], is a mipmap-like pyramid [399] for the original shadow map that stores suc-
cessively aggregated minimum and maximum depth values at each coarser level. To answer
a depth range query, typically the finest level is chosen where up to 2×2 adjacent texels con-
servatively cover the area in question. While this keeps the number of required texture fetches
constant, the actually considered shadow map area is usually larger than the specified area, re-
sulting in looser depth bounds. As a consequence, the search area is often unnecessarily large
and classifications as entirely shadowed or completely lit may be prevented. By contrast, our
acceleration structures detailed in Sec. 4.3 allow much more fine-grained area queries, thus
drastically reducing the amount of soft shadow computations.

Even if only relevant micro-occluders are considered, their number can easily reach and
exceed several thousand for a single fragment. Such large counts take a considerable amount of
time to process, frequently preventing real-time performance. A simple approach to alleviate
this problem is to resort to a coarser-resolution shadowmap for constructingmicro-occluders.
In practice, the minimum channel of an appropriate level of the HSM is employed to this end.
Typically, an upper bound on the number of micro-occluders considered during visibility de-
termination is imposed. For each fragment, the finest HSM level is then selected where the
search area comprises few enough texels to meet this budget.

Shortcomings

The basic soft shadow mapping algorithm suffers from several shortcomings. Solely using a
single shadow map to convey occluder information naturally provides only a sampling of a
subset of all light blockers. Consequently, any derived occluder reconstruction is typically just
an approximation of the actual geometry. In particular, fine structures may be missed and light
blockers which cannot be seen from the light source’s center are wrongly ignored, which can
lead to noticeable artifacts. An often-quoted example is a box below a large light source hov-
ering over a ground plane, where only the box’s top face is accounted for but the remaining
parts are ignored, causing the umbra to be completely missed (see Fig. 4.3 on page 35). This
can be alleviated to a certain degree by our method for visibility determination (cf. Sec. 4.2),
which readily supports dealing with multiple shadow maps. However, while additional depth
maps improve accuracy, creating and processing them increases the required amount of time.

2Actually, this assumption is only correct if any two micropatches adjacent in texture space correspond to two
neighboring parts of the same surface, which, however, is typically assumed (see shortcomings below).
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The adoption of a single shadow map (or a small number of them) is hence a deliberate design
decision trading accuracy for speed.

Another problem is that gaps can occur between neighboring micropatches. Usually, such
gaps are not actual occluder-free regions but undesired holes in the reconstruction of surfaces.
These result from the piecewise-constant approximation with micropatches and lead to dis-
turbing light leaks. Given the lack of information allowing a correct discrimination, it is hence
reasonable to try to close all gaps. To this end, Guennebaud et al. [147] consider the left and
bottom neighbors in the shadowmap for each micropatch, dynamically extending it appropri-
ately to the borders of these neighbors (see Fig. 4.1 b). We observe, however, that gaps towards
the diagonal neighbor may still exist [333], which can be alleviated by explicitly accounting for
this neighbor, too [29]. In Sec. 4.4, we present an alternative to micropatches which implicitly
closes any gaps and further improves on the reconstruction of occluders from the shadowmap.

Note that invariably closing gaps is a necessary approximation. It knowingly accepts over-
occlusion artifacts due to blockers that are wrongly introduced by assuming that two adja-
cent shadow map texels sample the same surface. Actually, correctly dealing with such gaps in
absence of further information is a general problem also encountered in raytracing of depth
images [181, 224]. While heuristics were developed, like performing gap filling between two
adjacentmicropatches only if their depth difference is below a user-specified threshold [7], they
are far from robust. Therefore, we feel the best we can do to reliably avoid light leaks is to close
all gaps without exception.

A further issue with the basic algorithm concerns the way the occlusion of individual mi-
cropatches is combined. Accumulating the areas covered by them is only correct if the projec-
tions of the micropatches onto the light source don’t overlap.This, however, is typically not the
case, although initially recording only occluders visible from the light’s center surely helps ob-
viating overlaps.The resulting incorrect occluder fusion leads to overestimating light occlusion
and may cause clearly objectionable artifacts. To avoid them, we developed a robust solution
for visibility determination that properly deals with arbitrary such overlaps. It is described in
the next section.

As mentioned before, only a rough conservative estimate of the depth range for arbitrary
rectangular shadow map areas can be obtained with a small fixed number of accesses into the
HSM. Therefore, often significantly more micropatches are processed than actually required,
which negatively impacts performance.Mitigating this problem of performing irrelevant work,
we devised more effective acceleration structures, covered in Sec. 4.3.

Furthermore, selecting the shadow map (mipmap) level3 for micro-occluder construction
individually per fragment can lead to noticeable transition artifacts. If different levels are used
for two adjacent pixels, different occluder approximations get employed, which generally yield
an unequal amount of light blocking. In particular, resorting to a coarser level for deriving
micropatches typically causes an overestimation of the occluders’ size. While we present an
approach for coarser micro-occluders in Sec. 4.5 that improves the approximation quality, the
avoidance of transition artifacts is discussed in Chapter 5 as part of a more generic scheme for
adapting computational efforts.

3We use the more general term shadow map level instead of HSM level in the following, since this multi-
resolution information may also be provided by alternative representations other than the HSM.
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4.2 Visibility determination with occlusion bitmasks

The visibility of the light source is typically determined by summing up the areas covered by
individual micro-occluders. This simple approach, however, ignores potential overlaps, which
can lead to severe artifacts like those in Figs. 4.32 b and 4.33 b onpage 65 and 66, respectively. To
address this grave problem, we developed a new algorithm, bitmask soft shadows (BMSS) [333].
It samples the light source and employs a bit field to maintain the visibility state for the light
points. Providing a solution to the underlying occluder fusion problem, BMSS enable further
applications, like incorporating occluder information frommultiple shadowmaps or correctly
handling multi-colored light sources.

4.2.1 Occlusion bitmasks

Instead of keeping and updating a single visibility factor, we sample the light source visibility
via several point-to-point relations in our BMSS algorithm. More precisely, we place sample
points on the light source and use a bit field to track which of them are occluded.The resulting
occlusion bitmask provides a discrete representation of which light area parts are occluded. We
then directly use the number of set bits to determine the light’s visibility.

As before, each relevantmicro-occluder is backprojected but rather then computing its area,
we determine a bitmask reflecting which light samples are occluded by it, and incorporate this
into the occlusion bitmask with a bitwise or. Note that in case of overlapping micro-occluders
the same bit gets set multiple times, i.e. occluder fusion is automatically dealt with correctly.

In principle, the sample points can be placed arbitrarily on the light source. Ideally, they are
decorrelated and follow some random pattern to obviate banding artifacts. As explicitly loop-
ing over all samples is prohibitive, lookup textures may be employed. Indeed, for micropatches
a simple strategy similar to summed-area tables [83] is possible because their backprojections
are just axis-aligned rectangles on the rectangular light source. Assuming the light area is pa-
rameterized as a unit square [0, 1]2, we generate a lookup texture of size (nx + 1) × (ny + 1)
for each group of 128 samples (4 integer channels à 32 bit), with texel (i , j) storing the bitmask
corresponding to the covered area [0, i/nx] × [0, j/ny]. By utilizing the identity
bitmask([x0, x1] × [y0, y1]) = bitmask([0, x1] × [0, y1]) and(not (bitmask([0, x1] × [0, y0]) or bitmask([0, x0] × [0, y1]))),

the bitmask representing the occlusion due to a micropatch covering the region [x0, x1] ×[y0, y1] can then easily be determinedwith just three texture accesses per group of 128 samples.
Nevertheless, given the often high number of micropatches processed per fragment, per-

forming at least three texture fetches for each of them can be rather expensive. Therefore, we
typically restrict the positioning and number of sample points such that fast updates of the oc-
clusion bitmask are possible using only arithmetic operations. As illustrated in the bottom row
of Fig. 4.2, we considered regularly placed, uniformly spaced sample points for bit fields of size
8×8, 16×16 and 32×32. These allow efficiently updating the occlusion bitmask to incorporate
the light blocking due to a newmicropatch. To this end, we first map the micropatch’s axial ex-
tent into bit ranges via scale, bias and integer conversion operations and then derive a bitmask
for the micropatch, which gets or-ed with the occlusion bitmask.

While 16×16 sample points often offer enough levels of visibility discrimination, a strictly
regular sampling pattern is usually suboptimal and can lead to clearly visible discretization ar-
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(a) 8×8 (b) 16×16 (c) 16×16, jittered (d) 32×32
Figure 4.2 Overview of the various sampling patterns considered. Top rows: resulting soft
shadows with zoom-in. Bottom row: placement of used sample points on a unit light source.
In (c), the 2×2 RGSS pattern is highlighted.
tifacts. We alleviate this by regularly jittering the sample positions such that the resulting sam-
pling pattern is identical to an 8×8 tiling of the 2×2 rotated grid super sampling (RGSS) pattern.
This is known to offer good antialiasing quality for nearly vertical and horizontal edges [8].
Similarly, our jittered sampling pattern is well suited to deal with the encountered axis-aligned
rectangles. In particular, it often closely matches the quality of the regular 32×32 sampling pat-
tern.

Note that updating an occlusion bitmask for other micro-occluders than micropatches can
become significantly more involved because their projections may not be axis-aligned rectan-
gles. When we deal with such alternative micro-occluders in Sec. 4.4, both approximate and
accurate techniques for bitmask determination are hence discussed.

4.2.2 Advanced applications

Since occlusion bitmasks can correctly handle arbitrarily overlappingmicro-occluders and also
provide explicit information about which parts of the light source are blocked instead of of-
fering just a visibility factor, new applications beyond standard soft shadow mapping become
possible.
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(a) (b) (c) (d) (e)

Figure 4.3 Single silhouette artifact setup. (a) Reference image. (b) Occlusion bitmasks with
two depth layers (16×16, jittered). (c) Standard soft shadow mapping with area accumulation.
(d) Maximum of the occlusion accumulated separately for two depth layers as suggested by
Atty et al. [19]. (e) Maximum of the occlusion due to two separately considered planar light
blockers.

Multiple shadowmaps

So far, we have used only information from a single shadow map. Concerning visual quality,
our algorithm hence improves “merely” on artifacts due to overlaps encountered in standard
soft shadow mapping with area accumulation. In several cases, these artifacts can be rarely
noticeable and hence may even be acceptable. This is mainly because by solely processing oc-
cluders visible from a dedicated point on the light source, the possibility of overlap is kept small
compared to techniques like soft shadow volumes in the first place.

On the other hand, thanks to correctly handling occluder fusion, occlusion bitmasks make
it further possible to incorporate occluder information extracted from multiple shadow maps
in the visibility determination process. This enables us to basically capture all occluders and
correctly account for them, barring approximation-related inaccuracies, like invariably closing
all gaps. To capture additional occluders, one could render shadowmaps frommultiple sample
points on the light source. An easier way is to perform depth peeling [111, 246] from a single
sample point. Note that to keep the cost of additional rendering passes low, a smaller frustum
can be used for all but the first depth layer. For instance, onemight focus only on objects directly
below the light source, since usually most occlusion artifacts occur there.

By this ability to resort to multiple shadow maps, occlusion bitmasks lift one severe limi-
tation of alternative real-time soft shadow algorithms, namely processing only those occluders
which are visible from a single sample point. As demonstrated by the well-known single sil-
houette artifact setup [15] in Fig. 4.3, this restriction can lead to objectionable artifacts that
deprive the image of important depth cues (cf. Subfig. c). In contrast, employing depth peel-
ing to capture additional occluders (Subfig. b) allows us to come quite close to the reference
obtained from averaging 1024 hard shadows (Subfig. a). Furthermore, Subfigs. d and e illus-
trate that heuristics, like determining the occlusion due to the closest front faces and due to
the farthest back faces separately and taking their maximum, do not necessarily yield correct
results.

In addition, it is possible to use a separate shadow map per object or group of object. For
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Figure 4.4 Phlegmatic dragon illuminated by a two-colored EG logo light source (inset).

instance, in case of a scene composed of a moving object and other objects currently not mov-
ing, we can derive occlusion bitmasks for them at different rates and combine these bitmasks
each frame to determine the correct light visibility.

Multi-colored light sources

Since an occlusion bitmask provides detailed spatial information about the occluded parts of
the light source, bitmask soft shadows can readily be adapted to deal with multi-colored lights.

In case of few different unique colors, we use bitmasks identifying sample points of the same
color. For each, we perform a bitwise and with the occlusion bitmask and count the set bits to
derive the corresponding visible fraction of the overall light area. These visibility factors then
serve asweighting factors for the colors. Fig. 4.4 shows an example using a bit field of size 32×32.
Note that this extension introduces far less overhead than approaches using a 4D texture [15]
or a summed-area table [147], which necessitate multiple texture accesses per backprojected
micropatch and also cannot correctly handle occluder fusion.

In case of arbitrarily textured light sources with many different colors, it becomes more
efficient to employ lookup textures for subgroups of the bit field in order to derive the color
for the visible fraction of the light source. For instance, a 2D texture of size 256 × ⌊n/8⌋ may
be created in case of n light sample points and groups of 8 bits. A separate row is dedicated
to each group, storing the visible light color for all 256 bit combinations. During rendering, a
texture lookup is then performed for each group, using the integer encoded by the group’s bits
as column index.

Note that non-rectangular planar light sources can be interpreted as a special case of a two-
colored rectangular light source. To this end, a rectangular light source whose extent encom-
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passes the non-rectangular one is employed together with a bitmask identifying those sample
points which are actually within the non-rectangular light’s area.

4.2.3 Discussion

Occlusion bitmasks offer a robust solution to the occluder fusion problem.The underlying key
idea is approaching point-to-region visibility determination as a sampling problem, involving
multiple point-to-point visibilities.

Relation to casting shadow rays

Similarly, in ray-based image synthesis methods like distributed ray tracing [80], the visibility
of a light source is computed by casting shadow rays to multiple light sample points. Each ray
is tested for intersection against the actual scene geometry. Note that once any surface is hit,
the light point corresponding to the ray is known to be occluded, i.e. no further scene objects
have to be processed.

By contrast, bitmask soft shadows work only on an approximation of the occluder geome-
try derived from a shadow map (or multiple maps). Moreover, the computation is structured
differently. Instead of looping over the sample points, gathering occlusion from light blockers,
all potentially relevant micro-occluders are enumerated and projected onto the light area to
identify occluded light points, thus scattering the occlusion caused by the micro-occluders.

Discretization artifacts

Since we determine the visibility via point sampling, a hard transition occurs when a sample
finally gets occluded and hence a bit becomes set. Therefore, the encountered light visibility
factors can only take on a limited number of different discrete values, defined by the size of the
bit field. It is hence pertinent to employ enough light samples to avoid banding artifacts, where
single discernable color bands appear instead of a smooth gradient. Considering that usually
both displays and color buffers allocate at least eight bits per color channel (using a non-linear
encoding, though), not less than 256 light sample points should be used, although sometimes
significantly fewer may suffice.

On the other hand, discretization artifacts can also arise if more than one bit changes state
when transitioning between two points corresponding to two adjacent pixels in the final image.
Note that such a case is not that unlikely because micropatches are axis aligned and the em-
ployed sampling pattern is typically (semi-)regular. Hence, artifacts are particularly severe if a
large silhouette edge of a shadow caster is in good alignment with a border of the light source
as in the scene depicted in Fig. 4.3.

In practice, however, discretization artifacts are often acceptable, especially since they are
usually masked by the texture of the shadow-receiving surface and hence remain (largely) im-
perceptible. To alleviate such artifacts, nevertheless, the determined visibility may be stored in
an intermediate visibility buffer, which can then be filtered according to simple heuristics [333].

Implementation notes

In our implementation of occlusion bitmasks, a reasonable effort was spent on optimization.
Nevertheless, updating the bitmask for the jittered 16×16 sampling pattern still requires 131
scalar instructions in our GLSL version. Note that such a high number of arithmetic operations
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1 void UpdateMask(in vec4 lPos,
2 inout uvec4 mask0,
3 inout uvec4 mask1)
4 {
5 lPos = vec4(16.0) * lPos;
6 uvec4 bitrangeP = uvec4(lPos + vec4(0.5 + 0.25));
7 uvec4 bitrangeM = uvec4(lPos + vec4(0.5 - 0.25));
8
9 unsigned int maskXEvenY = (1u << bitrangeP.z) - (1u << bitrangeP.x);
10 unsigned int maskXOddY = (1u << bitrangeM.z) - (1u << bitrangeM.x);
11 unsigned int maskYEvenX = (1u << bitrangeM.w) - (1u << bitrangeM.y);
12 unsigned int maskYOddX = (1u << bitrangeP.w) - (1u << bitrangeP.y);
13
14 unsigned int maskX = maskXEvenY + (maskXOddY << 16u);
15
16 uvec4 maskY;
17
18 maskY.x = (maskYEvenX ) & 1u;
19 maskY.y = (maskYEvenX >> 2u) & 1u;
20 maskY.z = (maskYEvenX >> 4u) & 1u;
21 maskY.w = (maskYEvenX >> 6u) & 1u;
22 maskY.x += (maskYOddX << 1u) & 2u;
23 maskY.y += (maskYOddX >> 1u) & 2u;
24 maskY.z += (maskYOddX >> 3u) & 2u;
25 maskY.w += (maskYOddX >> 5u) & 2u;
26 maskY.x += (maskYEvenX << 15u) & (1u << 16u);
27 maskY.y += (maskYEvenX << 13u) & (1u << 16u);
28 maskY.z += (maskYEvenX << 11u) & (1u << 16u);
29 maskY.w += (maskYEvenX << 9u) & (1u << 16u);
30 maskY.x += (maskYOddX << 16u) & (2u << 16u);
31 maskY.y += (maskYOddX << 14u) & (2u << 16u);
32 maskY.z += (maskYOddX << 12u) & (2u << 16u);
33 maskY.w += (maskYOddX << 10u) & (2u << 16u);
34
35 mask0 |= (maskY * 0x5555u) & maskX;
36
37 maskY.x = (maskYEvenX >> 8u) & 1u;
38 maskY.y = (maskYEvenX >> 10u) & 1u;
39 maskY.z = (maskYEvenX >> 12u) & 1u;
40 maskY.w = (maskYEvenX >> 14u) & 1u;
41 maskY.x += (maskYOddX >> 7u) & 2u;
42 maskY.y += (maskYOddX >> 9u) & 2u;
43 maskY.z += (maskYOddX >> 11u) & 2u;
44 maskY.w += (maskYOddX >> 13u) & 2u;
45 maskY.x += (maskYEvenX << 7u) & (1u << 16u);
46 maskY.y += (maskYEvenX << 5u) & (1u << 16u);
47 maskY.z += (maskYEvenX << 3u) & (1u << 16u);
48 maskY.w += (maskYEvenX << 1u) & (1u << 16u);
49 maskY.x += (maskYOddX << 8u) & (2u << 16u);
50 maskY.y += (maskYOddX << 6u) & (2u << 16u);
51 maskY.z += (maskYOddX << 4u) & (2u << 16u);
52 maskY.w += (maskYOddX << 2u) & (2u << 16u);
53
54 mask1 |= (maskY * 0x5555u) & maskX;
55 }

Listing 4.1 Example GLSL code for updating a bitmask to incorporate the occlusion due to
a rectangle covering the region [lPos.x, lPos.z] × [lPos.y, lPos.w] ⊆ [0, 1]2. The sample
points are placed according to the jittered 16×16 pattern.
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nicely hides memory latency due to texture fetches necessary for extracting micro-occluders
from the shadow map.

In case of tracking visibility by a 32×32 bit field, 32 scalar registers are required just for
storing the bit field. This high register count negatively affects the number of concurrently
processed threads, thus limiting overall speed. Indeed, when executing the same instructions
but using only 16 scalar registers, the performance increases by roughly 75% (on an NVIDIA
GeForce 8800GTS).We therefore employ temporary array variables, which are stored in slower
local memory but enable a higher degree of parallelism. Compared to the register-based vari-
ant, we observed a speed-up of more than 50% (again on a GeForce 8800 GTS).

Efficiently processing bit fields is non-trivial but many sophisticated algorithms and for-
mulations exist. For instance, counting the number of set bits is done by hierarchically adding
up subgroups of bits in parallel [10]. As updating an occlusion bitmask to incorporate a mi-
cropatch’s contribution is central and requires some care to achieve reasonable performance,
we provide representative GLSL code for the challenging jittered 16×16 case in Listing 4.1.
4.3 Acceleration structures

For high performance, it is essential to avoid useless computations and spend the available time
only on those parts which actually affect the result. In particular, only micro-occluders should
be processedwhich actually influence the light visibility of a shadow-receiving point.Therefore,
we aim to keep the number of those micro-occluders to a minimum whose backprojections
don’t cover the light area at all and which hence don’t contribute to the final occlusion value.
Since, in practice, micro-occluders are constructed for all texels within a rectangular region of
the shadowmap, the search area, this translates to determining the smallest bounding rectangle
encompassing all relevant texels.

As detailed in Sec. 4.1, an initial coarse estimate of the search area can be iteratively refined
and thus pruned with an acceleration structure. Such an auxiliary construct enables determin-
ing a conservative bound of the depth range of a specified shadowmap region in constant time.
Furthermore, an acceleration structure implicitly provides a multi-resolution representation of
the shadowmap that allows creating fewer but coarsermicro-occluders to satisfy some imposed
upper bound on the number of micro-occluders processed per fragment.

Recall that one simple acceleration structure is the hierarchical shadow map, which, how-
ever, often requires choosing query regions larger than the search area. Therefore, the HSM
typically yields quite loose bounds and hence unnecessarily big search areas. As this negatively
restricts the achievable performance, we developed an alternative, the multi-scale shadowmap
(Sec. 4.3.1), which significantly improves search area pruning. To combine small construction
and storage costs with tight bounds, we further devised a hybrid between these two acceleration
structures, termed Y shadow map (Sec. 4.3.2).

4.3.1 Multi-scale shadowmap

Our multi-scale shadow map (MSSM) [333] is an alternative multi-scale representation of the
shadowmap which is not pyramidal, like the HSM and classical mipmaps, but retains the orig-
inal resolution across all levels. In this acceleration structure, a texel at level i stores the min-
imum and maximum depth values of a neighborhood region of size 2i × 2i centered at the
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(a) Level 0: 1×1 (b) Level 1: 2×2 (c) Level 2: 4×4 (d) Level 3: 8×8
Figure 4.5 Example of a multi-scale shadow map (zmin channel) of resolution 8×8: The blue
texels in levels 1–3 contain the minimum values of the identically colored regions in level 0.
Each fully colored orange/reddish texel is derived from the values of the texels in the previous
level of the same shade, which together cover a region as indicated by the colored rectangles.
The overall minimum can be accessed via the green texel.

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Figure 4.6 Example of a multi-scale shadow map, showing the zmin channel of the first five
levels. Each texel in level i > 0 contains the minimum depth value of a region of size 2i × 2i in
level 0 centered at the texel’s location. In particular, the highlighted texel in a level i > 0 covers
the identically colored region in level 0.

texel in level 0. As illustrated in Fig. 4.5, each texel at level i > 0 can be derived from four tex-
els tuv of level i − 1. Because the neighborhood region is clamped to the shadow map extent,
a clamp-to-edge texture wrapping mode is employed when accessing texels tuv . Note that re-
sulting overlaps of neighborhood regions don’t cause any problems, since only their extrema
are combined. Typically, an MSSM gets stored in a 2D array texture because this enables the
dynamic selection of the sampled level within a shader. An example of such a stack of depth
ranges for all power-of-two-sized neighborhoods is shown in Fig. 4.6.

Concerning the application of the MSSM for search area pruning, we follow the general
approach described before in Sec. 4.1. Initially, the search area is determined as the (clamped)
projection of the light source onto the shadow map’s near plane. We then obtain a first bound[zmin, zmax] for the search area’s depth range via a single MSSM sample. If the currently consid-
ered point p is outside this range, it is either completely lit or in umbra, rendering any micro-
occluder processing unnecessary.

Otherwise, zmin is used to refine the search area. Subsequently, we take four samples from
the appropriate MSSM level such that their associated (possibly partially overlapping) neigh-
borhood regions tightly cover the search area to get a more accurate depth range bound.This is
utilized to further refine the search area before finally starting with any micro-occluder back-
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Level 1 Level ≥2

Level 2 Level 3

(a) N-buffer: redundant data (b) MSSM: duplicate data (c) MSSM: non-power-of-two
at same location only at different locations region extents

Figure 4.7 Compared to an N-buffer, the MSSM provides more detailed information near
the borders.

projection. Note that, in principle, further pruning iterations can be performed, although ex-
perience shows that typically the resulting improvements are marginal at best.

As the information stored in the MSSM is essentially a superset of that in the HSM, it can
readily be used to construct micro-occluders from coarser levels i > 0. To this end, an MSSM
level i is subsampled at a rate of one in 2i texels, making the actual sampling positions adhere
to the same grid as implicitly imposed by the HSM.4

Relation to N-buffers

Though developed independently, the MSSM shares many similarities with the N-buffer [89]
andhencemay be considered a variant of it.Themain difference is thatwe store a neighborhood
region’s depth range at its (discretized) center instead of its lower left corner. This has several
immediate consequences, ultimately improving the results for search areas touching or crossing
the shadow map’s border.

Essentially, the MSSM provides more information than an N-buffer because no redundant
data is stored.5 As illustrated in Fig. 4.7 a, in an N-buffer the 2i × 2i texels at the upper-right
corner in the i-th level are identical to the corresponding elements in all higher levels because
the region about which information is gathered doesn’t change any longer for these elements.
By contrast, duplicate data in an MSSM always occurs at different locations and arises only if
a smaller neighborhood for one texel coincides with the larger neighborhood for another texel
after clamping against the shadow map border (cf. Fig. 4.7 b).

Avoiding redundancy by centering the neighborhood at a texel translates into the avail-
ability of more fine-grained information near the borders. In particular, unlike with N-buffers,
directly supported query regions of non-power-of-two extent are not restricted to the top-most
rows and right-most columns (see Fig. 4.7 c).

4Note that such a positional restriction is essential, since otherwise neighboring pixels in the final image may
sample the shadow map at an identical scale but at slightly translated and hence different sample points, which
leads to artifacts.

5From an information-theoretical point of view, all aggregated data stored in addition to the base data is redun-
dant, i.e. all levels i > 0 contain redundant information. In contrast, we only refer to data as redundant if identical
information is already stored at a single and directly related location, like the same texel in a different level. That
is, we consider aggregated data as new information, under the rationale that performing such aggregation is the
very purpose of an acceleration structure.
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(a) Level i = 0 (b) Level i = 2
Figure 4.8 For point p, the minimum depth recorded in all texels within the shadow map
region defined by intersecting the near plane with the point–light pyramid equals p’s depth.
(a) Consequently, no micropatch blocks light from p if micro-occluders are constructed from
shadow map level 0, and querying the MSSM for this region correctly indicates that p is com-
pletely lit. (b) However, if micropatches are extracted from shadow map level 2, p becomes
partially shadowed. Therefore, when accessing the MSSM (featuring the resolution of shadow
map level 0), the query regionmust be enlarged to completely cover the footprint of level-2 tex-
els. Otherwise, p would incorrectly be classified as completely lit, causing a visibly noticeable
hard transition from the adjacent point q (of the neighboring pixel).

(a) “Over-precision” artifacts (b) With query region adaptation

Figure 4.9 Using the MSSM may lead to “over-precision” artifacts at the interface to fully lit
regions (a), which can be avoided by adapting the region queried during search area pruning
appropriately (b). The red dashed line indicates the actual interface introduced by the coarser-
level micro-occluders that get backprojected.

“Over-precision” artifacts

When an upper bound on the number of micro-occluders considered per fragment is imposed
and hence a coarser shadow map level may be employed for constructing micro-occluders,
using the MSSM to derive the search area requires some extra care. In such a case, the area
queried for its depth range has to be grown to account for the current budget to avoid that
resulting classifications as needing no backprojection are sometimes too accurate.
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Acceleration structure Size Construction time Memory footprint

HSM 10242 0.26 ms 10.67 MB
MSSM 10242 3.92 ms 88.00 MB
YSM 10242/2562 0.46 ms 14.67 MB

HSM 20482 0.87 ms 42.67 MB
MSSM 20482 18.65 ms 384.00 MB
YSM 20482/2562 1.07 ms 46.67 MB

Table 4.1 Cost of acceleration structures on an NVIDIA GeForce 8800 GTX. Note that the
YSM figures are for a non-truncated HSM part.

More precisely, at higher levels i > 0, regions covered by an MSSM sample only align with
texel boundaries at level 0 but not necessarily with the boundaries of the texture-space support
of the coarser micro-occluders later constructed at levels j > 0 during visibility determination.
As a consequence, when the search area is computed at the original shadow map resolution,6
those micro-occluders overlapping the search area border get ignored which only become rel-
evant micro-occluders because of the contribution of samples outside the search area during
minimum aggregation (cf. Fig. 4.8). If this “over-precision” ultimately results in classifying a
pixel as fully lit, discontinuity artifacts can appear at the interface between penumbra and com-
pletely lit regions, as demonstrated in Fig. 4.9. To alleviate this issue, we determine the level j
from the current search area and the imposed micro-occluder budget, and grow the area be-
fore querying its depth range to completely include the support regions of all partially covered
level- j micro-occluders. Note that this effectively reduces the resolution of the finest MSSM
levels.

4.3.2 Hybrid Y shadowmap

As demonstrated in Fig. 4.10, theMSSM can significantly reduce the search area size compared
to the HSM, and substantially more often enables classifying a pixel as being in an umbra or a
completely lit region. On the down side, both its construction and its memory footprint ren-
der the MSSM too expensive for shadow map sizes greater than 10242, since the resolution is
not reduced across levels (cf. Table 4.1). By contrast, the HSM entails significantly lower costs
because of its pyramidal nature, which, however, is also responsible for the usually much more
conservative results.

Seeking to get the best of both approaches, we employ a hybrid between the HSM and the
MSSM. This so-called Y shadow map7 (YSM) [336] is constructed by combining the first n
levels of the HSM with an MSSM built from level n − 1 of the HSM. Note that typically an
upper limit on the number of considered micro-occluders is imposed, in which case anMSSM
requires growing the query region according to this budget.Therefore, a full-resolutionMSSM
doesn’t make much sense for the finest levels anyway.

We store the YSM distributed over a 2D texture with mipmap chain for the HSM part and

6Note that while the search area is determined, its final size is unknown yet and hence the level from which
micro-occluders are to be extracted.

7The “Y” stems not only from the word hybrid but also reflects the development of the levels’ resolution. The
upper two converging lines correspond to the pyramidal part, which transitions into a stack of equal-sized levels,
represented by the lower vertical line.
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(a) HSM (10242) (b) MSSM (10242)

(c) YSM (10242/2562) (d) Soft shadows

Figure 4.10 Comparison of the effectiveness of acceleration structures. Pixels which are not
classified as either in umbra or completely lit are highlighted. The color coding indicates the
size of the search area in a shadow map of size 10242, and hence the number of (level-0) mi-
cropatches which have to be backprojected to determine the actual degree of the light’s occlu-
sion (blue: 10 micropatches or less; green: 400 micropatches; red: 6000 micropatches or more).

a 2D texture array for the MSSM part. Note that MSSM level 0 does not need to be explicitly
stored because it is identical to HSM level n − 1. While it is possible to truncate the HSM
pyramid at level n, where theMSSM begins, in our implementation we actually construct a full
HSM. Although this is of no use for search area pruning, it allows us to always employ solely
the HSM for micro-occluder construction during visibility determination, improving texture
fetch locality and avoiding branching.

In practice, choosing a resolution of 2562 for the MSSM part provides a good trade-off
between additional construction cost and memory footprint compared to the HSM on the one
hand and potentially less tight search areas compared to a full-resolution MSSM on the other
hand (cf. Table 4.1 and Fig. 4.10). In our experience, the sometimes slightly increased number
of pixels requiring micro-occluder processing when using the YSM in lieu of the MSSM is
usually more than compensated for by the lower construction times.

4.3.3 Discussion

Acceleration structures are essential to keep the number of processed micro-occluders to a
minimum by bounding the actually relevant ones in shadowmap space. As exemplarily shown
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(a) HSM (b) MSSM (c) YSM (d) Soft shadows

Figure 4.11 Shadow map levels used to meet a budget of 256 micropatches per fragment
when employing various acceleration structures.

in Figs. 4.10 and 4.11, both the MSSM and the YSM are clearly superior to the HSM. Most
notably, they often drastically reduce the number of pixels for which micro-occluders have to
be backprojected thanks to being quite effective in identifying umbra and completely lit pixels.
Moreover, they typically yield smaller search areas than the HSM. Consequently, fewer micro-
occluders have to be processed, or alternatively, a finer shadow map level can be employed
for micro-occluder construction while still meeting an imposed budget. On the other hand,
the YSM incurs only a marginal overhead concerning construction time and occupied texture
space with respect to the HSM, as shown in Table 4.1.

Key to the improved results obtained with theMSSM (and the YSM) is its ability to directly
support queries for arbitrarily placed squares of power-of-two size. By contrast, the HSM, es-
sentially being a quadtree constructed over the shadow map, is restricted to rectangles corre-
sponding to quadtree tiles. Therefore, an arbitrary power-of-two-sized square typically has to
be grown to the next coarser encompassing tile, quadrupling its size. Consequently, the depth
range is looser, often precluding a classification as completely lit or in umbra.

Note that the hierarchical traversal of an HSM as suggested by Dmitriev [93] similarly suf-
fers from supporting only quadtree tiles for classifying pixels. Moreover, this approach involves
maintaining a stack, which increases the shader’s register count and consumes additional time.

4.4 Occluder approximations

A shadow map provides a point sampling of the geometry visible from a dedicated point on
the light source. Reconstructing an approximation of the captured occluders from this scene
information is central to soft shadow mapping algorithms. Although micropatches, obtained
by unprojecting shadow map texels into world space, are often employed and simple to create,
they are neither the only nor necessarily the best option. Some alternative approximations are
shown in Fig. 4.12.

Addressing major shortcomings of micropatches, we developed microquads (Sec. 4.4.1),
which feature several desirable properties, like implicitly avoiding light leaks. To further im-
prove quality, we augmented them with microtris (Sec. 4.4.1). Both microquads and microtris
are rather challenging to process, and we hence devised both approximate and exact solutions
for determining the occlusion caused by them. Other researchers devised different options,
which we briefly cover in Sec. 4.4.5.
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(a) Texels (b) Micropatches (c) Microquads (d) Microtris (e) Occl. contour

Figure 4.12 Texture-space footprint of various occluder approximations (b–e) constructed
from an example shadow map excerpt (a; filled circles indicate texels which are closer to the
light than the currently processed point).

4.4.1 Microquads

Micropatches provide a piecewise-constant approximation of the occluders’ geometry. Since
they are parallel to the light plane such that their backprojections are axis-aligned rectangles,
many operations are rather simple and hence fast to execute. However, this simplicity also
causes micropatches to suffer from several problems. For instance, gaps are introduced, which
require special processing to avoid light leaks. Moreover, occluders are frequently overesti-
mated (cf. Fig. 4.14 a), potentially leading to noticeable enlargements of the penumbra’s extent
(see Fig. 4.33 on page 66 for an example).

To alleviate these shortcomings, we construct a different kind of micro-occluder from the
shadow map data. Instead of considering each texel as a micropatch, its unprojected center
is taken as a vertex. A regular quad mesh is then implicitly defined by these points and their
texture-space adjacencies.Wemake each face serve as amicro-occluder, calledmicroquad [333]
(see Fig. 4.13). It is created from four vertices corresponding to 2×2 neighboring texels (cf.

Microquad

p Gap

(a) Microquads (b) Clipping by clamping (c) Rectangle approximation

Figure 4.13 (a) Microquads are constructed from unprojected texel centers and provide
a piecewise-(bi)linear approximation of the occluders. (b) Backprojected microquads are
cheaply clipped to the light area by projecting their vertices onto the nearest boundary edge
via clamping. Note that the microquad mesh remains watertight and that no overlaps are in-
troduced. (c) To allow fast bitmask updates, each microquad is approximated with a rectangle
defined by the centers of the quad’s edges.
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Overlap

Overestimation

Overlap

Underestimation

(a) Micropatches (b) Microquads

Figure 4.14 While using micropatches (a) often suffers from overestimating the occluders,
microquads (b) can lead to some underestimation. Note that with both approximations over-
laps can occur as demonstrated by the blue and green primitives.

Fig. 4.12 c), and gets only taken into account during visibility determination if all four vertices
are closer to the light source than the point for which light visibility is computed.

Note that this alternative occluder approximation replaces the micropatches’ piecewise-
constant interpolation with piecewise-(bi)linear interpolation. It is hence not surprising that
microquads adapt better to the actual geometry thanmicropatches (cf. Fig. 4.16). In particular,
since adjacent microquads share a common boundary no unwanted gaps occur in the first
place, and hence light leaks are avoided.

Another advantage ofmicroquads is that they are less prone to cause surface acne. Referring
to Fig. 4.15, consider a planewhich is visible from the light’s center and not perpendicular to the
z axis of the shadowmap’s frustum. In case of using a micropatch approximation, many points
on that plane which don’t coincide with a shadow map sample point get partially occluded by
the micropatch corresponding to the nearest sample point closer to the light, thus suffering
from incorrect self-shadowing. This is especially hard to avoid via biasing (without causing

Wrongly occluded

(a) Micropatches (b) Biased micropatches (c) Microquads

Figure 4.15 Whereas micropatches typically require biasing to avoid self-shadowing arti-
facts, microquads are less prone to surface acne. They typically provide a better fit to the un-
derlying geometry because they constitute a piecewise-(bi)linear approximation instead of a
piecewise-constant one like micropatches.



48 4.4 Occluder approximations

(a) Shadow map (b) Micropatches (c) Microquads

(d) Shadow map (e) Micropatches (f) Microquads

Figure 4.16 Visualization of the micropatches and microquads constructed from a coarse
shadow map for two example scenes. Note that micropatches are typically extended on the fly
to close gaps between adjacent micropatches.

artifacts in other parts of the image) if patches from coarser hierarchy levels get considered
(see also Sec. 4.5.4). Microquads, on the other hand, don’t cause any artifacts in this setup.

However, because a quad’s backprojection onto the light area does not yield an axis-aligned
rectangle in general, correct clipping and area determination as well as occlusion bitmask up-
dates are complicated. Accurate solutions are described below in Sec. 4.4.4, but incur some
overhead.

A cheap way to clip the backprojection of a microquad to the light area is simply clamping
its projected vertex coordinates against the light’s extent (see Fig. 4.13 b). While this approx-
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imation can introduce minor errors in the covered area, these imprecisions only occur at the
boundary of a mesh of connected microquads. In particular, no gaps or overlaps occur due to
this clamping step because the vertices are adapted consistently across microquads.

If light visibility is derived by area accumulation, the area covered by a clipped quad is then
easily computed by decomposing the quad into two triangles, calculating their (signed) areas
and adding these together.

4.4.2 Approximate occlusion bitmasks for microquads

While employing microquads in lieu of micropatches offers many advantages, artifacts due to
overlapping micro-occluders can still occur (cf. Fig. 4.14). Using occlusion bitmasks for visi-
bility determination is hence desirable, and being able to quickly derive bitmasks for backpro-
jectedmicroquads proves important. Because an accurate solution for arbitrary quads is rather
expensive, as mentioned before, we developed some fast approximation.

After clipping a microquad’s projection via clamping, we approximate the resulting quad
by fitting an axis-aligned rectangle to the center points of the quad’s edges.While this alleviates
area overestimation compared to using the quad’s bounding box, it breaks the connectedness
of diagonal neighbors, thus introducing minor gaps and overlaps (cf. Fig. 4.13 c). Note that the
same problem occurs when filling gaps via micropatch extension (and not accounting for the
diagonal neighbor).

Despite these simplifications, dealing with microquads is slightly more expensive than op-
erating with micropatches. This is largely due to more complex computations and not be-
cause of an often marginally increased number of required texture fetches. As when using mi-
cropatches and performing gap filling, for each microquad, usually only two new texels have
to be accessed because the remaining ones are known from the previously processed micro-
occluder.

4.4.3 Microtris

Recall thatwhen light visibility for a certain pointp is determined, amicroquad is only backpro-
jected if all of its four vertices are closer to the light source than p. Consequently, the occluder
geometry is potentially not that well approximated and its extent probably underestimated if
only three of the four considered vertices pass the distance test. To improve results in these
cases, the triangle defined by the three closer vertices may be taken as an additional micro-
occluder, termedmicrotri [335] (cf. Fig. 4.12 d).

Analogous to microquads, the backprojection of a microtri may cheaply be clipped against
the light source by clamping its vertex coordinates. Determining the covered area is then trivial,
whereas deriving an according bitmask is less straightforward. In particular, an approximation
by an axis-aligned rectangle is not a reasonable option for triangles, unlike with microquads.
Therefore, we advocate using the accurate procedure described in the next subsection when
employing occlusion bitmasks for visibility determination.

4.4.4 Exact occlusion bitmasks for microquads andmicrotris

Deriving the exact area or occlusion bitmask for a backprojectedmicroquad raises the question
of which light region to take as being actually occluded by the projection.The obvious option of
adopting a quad’s interior as its occlusion footprint turns out to be problematic. As illustrated in
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Figure 4.17 Various encountered cases when backprojecting a microquad ◻ABCD onto the
light source. The dashed lines indicate the convex hulls.
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Figure 4.18 Overview of the steps involved in deriving an accurate bitmask for a microquad
from its backprojected vertices.

Fig. 4.17, several different configurations can arise when backprojecting a microquad ◻ABCD
onto the light source. While selecting the dark brown area as the occluded region might seem
reasonable in cases a–c8, the fold-over setting in Subfig. d questions the suitability of this choice.

Therefore, we settle for the alternative of taking the convex hull of a microquad’s backpro-
jected vertices as occlusion footprint. This is motivated by reasoning that a microquad should
have the same footprint as the union of all of its microtris. Most notably, if one vertex is no
longer closer to the light than the considered point and hence only a microtri in lieu of a mi-
croquad is backprojected, then the region occluded by this micro-occluder should cover no
additional parts of the light compared to the footprint of the corresponding microquad.

Our general approach to exactly determine a microquad’s bitmask, outlined in Fig. 4.18,
therefore starts with deriving the convex hull in counter-clockwise (CCW) orientation. In or-
der to derive the bits corresponding to occluded light sample points, we employ a convex hull
bitmask initialized to all bits set. For each oriented edge of the convex hull, we determine the bit-
mask for the corresponding half-space and perform a bitwise andwith the convex hull bitmask.
Finally, the occlusion bitmask is updated to incorporate themicroquad’s occlusion footprint by
or-ing it with the convex hull bitmask.

Note that correct clipping against the light source is automatically performed by the edge-
wise convex hull bitmask updates. Moreover, microtris are directly supported because their
backprojection, a triangle, is just one of the possible convex hull shapes.

Convex hull determination

In the first step, we determine the convex hull of the micro-occluder’s backprojection such
that its vertices are enumerated in CCW order. Note that in case of a microquad, the (non-

8 Note that splitting the quad into two triangles and adding their signed areas correctly yields the area of this
region.
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Figure 4.19 (a) Cases for the position of microquad vertex D distinguished during convex
hull determination. (b–d) An example for each of the three classes is shown.

degenerate) convex hull may be either a quadrilateral or a triangle.
Pursuing a shader-friendly approach, we start with the triangle△ABCmade up of the mi-

croquad’s first three vertices or the microtri, respectively, determine its orientation and swap B
and C if it is clockwise. In case of a microtri, the resulting triangle already constitutes the con-
vex hull and nothing remains to be done. Otherwise, we compute the barycentric coordinates
of vertexDwith respect to the triangle, to identify which of the seven cases depicted in Fig. 4.19
holds, and choose the convex hull accordingly. If necessary, the vertices are finally reordered to
ensure a CCW order.

Convex hull bitmask construction via half-space bitmask lookup texture

Subsequently, for each edge of the convex hull, a bitmask for the corresponding half-space is
determined; these are combined with bitwise and, yielding the convex hull bitmask. One pos-
sibility for deriving the half-space bitmasks is to employ a lookup texture storing precomputed
bitmasks for a number of half-spaces. Recall from Sec. 4.2.1 that such an approach puts no
restrictions on the placement of light sample points, and hence naturally supports random dis-
tribution patterns.

More precisely, similar to Eisemann and Décoret [107], we parameterize a half-space by
the Hough transform [99] of its defining edge (line), i.e. its angle θ and signed distance r to the
origin. In a precomputation step, we regularly sample (θ , r) from the relevant domain [−π, π]×[−√2,√2], determine the corresponding bitmask values and store them in a lookup texture.
During visibility computation, the pixel shader computes the Hough parameters, queries the
lookup texture (with circular wrapping for θ and clamping for r) and updates the convex hull
bitmask, for each edge of the convex hull.

Concerning the required resources, a two-channel UINT32 texture suffices for 8×8 light
sample points, whereas for 16×16 points a four-channel UINT32 texture array with two array
slices is needed, and 32×32 points even necessitate eight array slices and hence eight texture
fetches per edge of the convex hull. To keep the shader register count to a minimum, we refrain
from maintaining a complete representation of the convex hull bitmask for cases with more
than 128 sample points, i.e. where multiple texture fetches are performed per edge. Instead, we
only employ a uint4 variable as working set, and by appropriately interleaving instructions
both construct the convex hull bitmask and update the occlusion bitmask in groups of 128
sample points.
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Figure 4.20 Light sample points are placed at integer positions (a) for the exact bitmask com-
putation of the half-space defined by an edge of the convex hull (b). After determining bound-
ing lines (specified by l , Δl and r, Δr) that enclose the region covered by the half-space, the
bitmask is created row-wise (c). All bits within the range ⌈l⌉ to ⌈r⌉ (excluded) are set before
proceeding to the next row, incrementing l and r by Δl and Δr, respectively.

Exact convex hull bitmask computation

Another option to determine half-space bitmasks is to compute them directly, thus avoiding
using a lookup texture and the entailed minor inaccuracies due to discretizing the half-space
parameters.Moreover, since the gap between offered computational power and available mem-
ory bandwidth is widening, keeping a shader’s arithmetic intensity high can help performance,
especially in the long run. However, deriving a convex hull’s bitmask merely via computations
is currently clearly slower than employing a lookup texture. In particular, it is way too expen-
sive to loop over sample positions and check for each whether it is contained in the convex hull.
On the other hand, for regular sample point patterns of size n × n, bitmask updates are already
feasible at interactive frame rates.

More concretely, if the sample points are located at integer positions (i , j), 0 ≤ i , j ≤ n − 1,
it is possible to efficiently determine the half-space bitmask for an edge of the convex hull by
processing a whole row of bits at a time (see Fig. 4.20). To this end, we transform the edge
vertices into sample space and derive two lines bounding the samples within the half-space, as
listed in Fig. 4.21. These lines are specified by inverse slopes Δl and Δr and horizontal coor-
dinates l and r of where they intersect the current row. We then repeatedly set all bits within
the range ⌈l⌉ to ⌈r⌉ (excluded) and proceed to the next row by incrementing l and r by Δl and
Δr, respectively, until the whole bitmask is determined. Note that horizontal edges are readily
supported by taking the parameters for a slightly tilted and shifted edge that yields the same
bitmask, thus exploiting the regular sample point placement.

4.4.5 Discussion

Micropatches and microquads (and microtris) are two different approximate reconstructions
of the occluder geometry captured in a shadow map. Lacking any further information, both
kinds ofmicro-occluder assume that occluder samples directly adjacent in texture space belong
to the same macro-occluder surface, i.e. no holes exist where light can pass through. While
micropatches have to be appropriately extended to enforce this and hence avoid light leak-
ing, microquads natively realize this assumption. Thanks to providing a piecewise-(bi)linear
approximation, microquads have several further advantages over micropatches, like typically
providing a better fit to the actual occluder geometry and thus being less prone to cause sur-
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Figure 4.21 Setup of exact bitmask computation parameters for a directed edge a → b with
direction d = b − a.

face acne. Since two neighboring microquads are connected by an edge, their backprojections
usually don’t overlap, which is in strong contrast to the situation withmicropatches as these are
just isolated primitives. Nevertheless, overlaps can still occur (cf. Fig. 4.14) and hence utilizing
occlusion bitmasks is advisable for high quality.While exact processing ofmicroquads is rather
expensive, our fast approximations render them competitive tomicropatches concerning speed
without severely affecting quality.

Because microquads are only backprojected if all four vertices are closer to the light source
than the currently shaded point, using them causes considered occluders to be bordered at
texel centers in texture space. On the other extreme,micropatches assume sampled occluders to
cover the whole texels. Consequently, microquads have a tendency to underestimate occluders,
while micropatches suffer from overestimating them. Note that since micropatches are always
parallel to the light plane and hence typically do not align well with the approximated occluder
surface, the overestimation can be pretty severe butmay also turn into an underestimation after
backprojection.

On the other hand, potentially overestimating an occluder’s extent helps capturing fine
structures. By contrast, microquads miss thin geometry like twigs and branches covering only
a single shadow map texel in width. The amount of underestimating the size of occluders can
be reduced by augmenting microquads with microtris. While they typically produce shadows
closer to the reference solution, their visual impact is usually subtle and not easily recognizable,
as demonstrated by the example in Fig. 4.22, where smoothness is improved at features lying
diagonal in shadow map space.
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(a) Only microquads, (b) Microquads and microtris, (c) Microquads and microtris,
area accumulation area accumulation occlusion bitmasks

(d) Differences between a and b (e) Differences between b and c

Figure 4.22 Comparison between employing just microquads (a) and additionally usingmi-
crotris (b), as well as between simple area accumulation (b) and accurate visibility processing
with occlusion bitmasks (c). To ease the recognition of differences, affected regions are high-
lighted in red (d, e) and merely a size of 5122 was used for the shadow map.

Occluder contours

While microquads and microtris are rather different from micropatches, other occluder ap-
proximations devised are directly based on micropatches. For instance, Bavoil and Silva [31]
employ the bounding sphere of a micropatch as occluder, and compute the subtended solid
angle to determine visibility of a spherical light source.

Guennebaud et al. [148] construct an occluder contour for each connected region of shadow
map texels passing the depth test (cf. Fig. 4.12 e). To this end, they slide a window of 2×2 ad-
jacent texels across the search area, and for each window position employ the corresponding
binary depth test results to consult a lookup texture for deriving a set of oriented edges which
together ultimately form the contours. Each edge is backprojected and the signed areas of the
resulting radial segments with respect to the light center are accumulated to derive light visibil-
ity. Because only contour edges have to be backprojected, and their number is typically smaller
than the equivalentmicropatch count, some computations are saved. However, all shadowmap
texels within the search area still have to be accessed, nevertheless.

Since a contour encompasses all neighboring shadow map samples passing the depth test,
light leaks are implicitly avoided. However, the rule set suggested by Guennebaud et al. for edge
construction treats sub-regions which are only adjacent in diagonal direction as being separate,
potentially introducing gaps (see e.g. Fig. 4.23 b, bottom). Furthermore, since contours are ex-
tracted in 2D instead of 3D space, occluders recorded in the shadow map may be missed (cf.
Fig. 4.23 a). This can lead to noticeable popping artifacts as the depth values at the 2D con-
tour may jump when the light moves relative to the occluder (even if the triggering occluder is
captured in both the old and the new shadow map).

Finally, contours can be moved inwards or outwards to adapt the extent of the enclosed re-
gion. Most notably, when resorting to coarser shadowmap levels for constructing the occluder
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Figure 4.23 Occluder contours are prone to ignoring occluders captured by the shadow
map (a), and may miss thin structures if shrunk by setting t = 1 (b).
approximation, shrinking them often helps reducing the approximation error (see also the next
section). On the downside, this may cause thin structures to be ignored (cf. Fig. 4.23 b).

4.5 Coarser occluder approximations

Since in many scenes the shadowmap search area can comprise an excessive number of micro-
occluders for a non-negligible amount of pixels, it is reasonable to impose an upper bound on
the number of micro-occluders processed per fragment and resort to coarser micro-occluders
to satisfy this budget. Recall that the standard approach to derive such coarser approximations
is to utilize a coarser shadow map level obtained via minimum reduction (cf. Fig. 4.24). The
required multi-resolution representation is readily available from acceleration structures like
the HSM, the MSSM or the YSM.

Picking theminimumdepth value of 2×2 adjacent shadowmap texel as their representative
is simple and also conservative in that it ensures that if at least one of the original samples
passes the depth test, then the coarser texel does so as well. Generally, this strategy preserves the
tendency of micropatches and microquads to over- and underestimate occluders, respectively.
In particular, fine structures are implicitly enlarged with micropatches at each coarser level,
whereas microquads increasingly miss thin occluders.

Note that while the unprojected center of a level-0 texel actually lies on some occluder
surface, this is often no longer the case for coarser texels derived via minimum aggregation.
Consequently, vertices of coarser microquads may hover above an occluder instead of being
on it, and coarser micropatches can severely protrude the occluder they intersect. This effec-
tively moves the occluder approximations closer to the light source compared to utilizing the
finest shadow map level. Depending on the considered shadow-receiving point, the occlusion
caused by the corresponding level-0 micro-occluders is hence typically either overestimated or
underestimated by coarser micro-occluders (cf. Fig. 4.24 c).

In addition to that, approximation quality is negatively affected by the missing flexibility
of the micro-occluders, entailed by their simplicity. Since micropatches have a uniform size in
texture space and microquad vertices are uniformly spaced in texture space, with them it is of-
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Figure 4.24 Coarser micro-occluders are constructed from a coarser minimum mipmap
level of the shadow map. They typically offer a reduced approximation quality.

ten not possible to represent the occluder samples from the original shadowmapwell at coarser
levels. To address this issue and increase the soft shadowquality for a given per-fragmentmicro-
occluder budget, we developed a generalization of the micropatch that enables better fits to the
underlying shadow map data at coarser levels. It is covered in the following subsections.

Another source of problems, especially when using a micro-occluder which provides a
piecewise-constant approximation, is the depth bias determination for the coarser levels. In
particular, simply using the same bias value for all levels can lead to visual artifacts, like surface
acne or missing contact shadows. We briefly cover this topic in Sec. 4.5.4.

Finally, note that resorting to a coarser-resolution shadow map level decreases the spatial
sampling rate and hence temporal coherence may suffer. Especially due to minimum aggrega-
tion, even slightly moving the light relative to the scene objects captured by the shadow map
can cause large changes in the derived occluder approximation.

4.5.1 Microrects as a generalization of micropatches

To better represent the sampled occluders at coarser levels, it is crucial to introduce more flex-
ibility in specifying a micro-occluder’s extent. As a concrete example, we pick micropatches
and generalize them by abandoning the limitation of uniform size in texture space. Since the
resulting new kind of micro-occluder can cover varying rectangular regions, it is referred to as
microrect [336].

Note that each texel of shadowmap level i completely defines a micropatch (cf. Fig. 4.25 a):
it has a texture-space reference point (the texel center), a fixed size corresponding to one level-i
texel (or equivalently 2i × 2i level-0 texels), and an associated light depth value. It represents
the occluders captured by the related 2i × 2i level-0 texels of the shadow map.

Microrects maintain the 1 ∶ 1 relationship between texels and micro-occluders. However,
at coarser levels i > 0, their texture-space extent is no longer restricted to a single level-i texel
but can be any rectangular region of level-0 texels subject to the following two constraints:
First, it must contain the microrect’s reference point, which is obtained by subsampling the
reference points from level i − 1. Second, the extent may not contain the reference point of any
other level-i microrect, thus imposing a maximum on it as illustrated in Fig. 4.25 b. These two
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Figure 4.25 Microrects generalize micropatches. The shown examples are from level i = 2;
for the quantities used in defining a microrect, the one stored in texel (2, 1) is highlighted.
requirements ensure that an acceleration structure can readily be used to identify a search area
of relevant micro-occluders.

More formally, for an input shadow map of size 2n × 2n, a microrect at level i is defined in
2D texture space by a reference point

(xr, yr) = 1
2Δt0 + (xr,i , yr,i) ⋅ 2iΔt0 ∈ [0, 1]2 with xr,i , yr,i ∈ {0, . . . , 2n−i − 1}

and an extent

(e−x, e−y; e+x, e+y) with e±☆ ∈ {(k + 1
2)Δt0,☆ ∣ k ∈ {0, . . . , 2i − 1}},

where Δt0 = (Δt0,x, Δt0,y) denotes the texture-space extent of a single texel in the finest shadow
map level (i = 0).Themicrorect covers the axis-aligned rectangular region given by the vertices(xr − e−x, yr − e−y) and (xr + e+x, yr + e+y), as shown in Fig. 4.25 c. Note that the special case
e±☆ = 2i−1Δt0,☆ yields a micropatch.

Since the microrects of levels i > 0 can have varying extents as well as overlap, both their
associated depth values and their extents no longer can directly be obtained from the acceler-
ation structure. We hence store them in two additional textures with full mipmap chains, i.e.
the gained flexibility comes along with an increased memory footprint.

4.5.2 Construction of microrects at coarser levels

By construction, the extent and associated depth value of amicrorect have to be determined ex-
plicitly. To simplify the presentation, we first consider the 1D case, shown in Fig. 4.26. Because
microrects at the finest level i = 0 are just micropatches, their extent and depth is trivially given
by the corresponding level-0 texel. For the remaining levels i > 0, the microrect extents and
depth values are derived iteratively from the ones of the next finer level i − 1. Remember that
the reference points of the level-i microrects are obtained by regularly subsampling the ones of
the microrects from level i−1. Consequently, we merge every secondmicrorect (e.g. microrect
B in Fig. 4.26 b) from level i − 1 with one of its neighboring microrects (A and C) to derive the
level-i microrects (M and N). We always pick that neighbor as merge partner which features
the least depth value difference (here: C). The extent of the resulting level-i microrect (N) is
given by the union of the extents of the involved finer-level microrects (B and C); its depth is
derived by taking the minimum of these microrects’ depth values.
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Figure 4.26 Example of 1D micropatches and microrects for successive levels.

Unfortunately, the 2D case is much more involved because a microrect has neighbors in x,
y and diagonal x–y direction but a rectangular extent.Therefore, it is in general not possible to
merge neighboring microrects such that the union of their extents is still rectangular. To avoid
missing any occluder, we hence take the smallest rectangular region encompassing the merged
extents as new extent. Note that this can lead to microrects with overlapping texture-space
extent. However, disallowing overlaps at all puts a heavy constraint on the microrects’ ability
to approximate the occluders because many potential microrect merges become prohibited.
Consequently, we don’t try to avoid overlaps but alleviate their influence on light occlusion by
using occlusion bitmasks instead of area accumulation during light visibility determination.

Microrects in level i+1 are derived directly from those in the next finer level i according to
a simple and fast greedy approach that is well suited for data-parallel processing and keeps re-
dundant comparisons to a minimum.We basically proceed like in the 1D case for determining
the merge partners in x and y direction and treat the diagonal neighbors separately. As before,
the depth associated with amicrorect is obtained byminimum aggregation.More precisely, the
construction comprises the following two passes. Referring to Fig. 4.27, we first considermerg-
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Figure 4.27 Example setup for greedy microrect construction. Each uniformly colored rect-
angular region corresponds to a microrect, with the contained dot marking its reference point.
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(a) Soft shadows (b) Fine micropatches (c) Coarse micropatches (d) Coarse microrects

Figure 4.28 Visualization of the micropatches and microrects constructed at level 0 (b) and
4 (c, d) for two example scenes. Note that at the finest level microrects are just micropatches.

ing themicrorects retained after subsampling (e.g. microrect A, which becomesM in level i+1)
with their neighbors in positive x and y direction (B and D).The decision whether to merge is
again based on the depth value differences between the merge candidate and its two involved
neighbors (B–A and B–C, as well as D–A andD–G). If amerge is executed and the resulting ex-
tent completely contains the diagonal neighbor’s one (E), we further assimilate this microrect.
In the second pass, a merge with all those level-i neighbors in negative direction (E, F and H
in case of P) is performed which have not been aggregated yet in the first pass.

We note that a global optimization as well as not only taking samples from the next finer
but from the finest level may yield better fits than our greedy approach; however, real-time
construction becomes rather difficult with more involved methods. Also note that a third pass
which locally reduces overlaps is not an option because apart from the extent, the depth ob-
tained via minimum aggregation would also have to be updated.

4.5.3 Discussion of microrects

Microrects vary from and improve on micropatches at coarser levels. The visualizations in
Fig. 4.28 nicely demonstrate the main characteristics and differences. Looking at the micro-
occluders covering the ground plane (the blue-colored ones), it is obvious that microrects ap-
proximate the finest-level samples better than micropatches. In particular, far fewer ground
plane samples are aggregated with camel and cow samples in case of microrects, which helps
keeping occluder overestimation small. However, while the shadowmap region covered by the
represented samples is a polyomino [141] (a collection of simply connected squares), a rect-
angle enclosing this region is used as microrect extent for simplicity. Therefore, the occluder
region represented by a microrect may be overestimated, and adjacent microrects often over-
lap, necessitating the use of occlusion bitmasks for visibility determination. By contrast, neigh-
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(a) Reference (b) Coarse micropatches (c) Coarse microrects
(1024 shadow maps) with area accumulation with area accumulation

(d) Coarse micropatches with occlusion bitmasks (e) Coarse microrects with occlusion bitmasks

Figure 4.29 When resorting to coarser levels, microrects yield better results than mi-
cropatches but necessitate using occlusion bitmasks for visibility determination.

boring micropatches always abut in texture space. Nevertheless, their backprojections often
overlap, especially at coarser levels, and hence performing correct micro-occluder fusion is
reasonable for them, too.

Thanks to typically more accurately approximating the underlying occluder geometry, mi-
crorects yield superior results compared to micropatches when resorting to coarser levels, as
shown in Fig. 4.29. We further observe that transition artifacts between pixels using different
levels for micro-occluder construction (see also Chapter 5) are often less pronounced than in
case of micropatches (cf. Fig. 4.30).

2 Level 1

(a) Scene (b) Used levels (c) Micropatches (d) Microrects

Figure 4.30 When micro-occluders are constructed at different levels across penumbra pix-
els (b), microrects (d) often cause less noticeable transition artifacts than micropatches (c).
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Apart from essentially precluding the use of simple area accumulation for visibility deter-
mination, microrects also incur additional overhead with respect to micropatches. Because the
extent is not uniform, it has to be derived, stored, and fetched explicitly. Moreover, the associ-
ated depth value can no longer be taken from an acceleration structure like the HSM but must
be computed and stored separately. As a concrete example, the construction of the two mi-
crorect textures (containing extent and depth) consumes 1.89ms for a 10242-sized shadowmap
on anNVIDIAGeForce 8800 GTX. Further note that in the employed pixel shader the number
of instructions executed per micro-occluder rises slightly and the register count is marginally
increased. Consequently, the improved visual quality comes along with a somewhat decreased
frame rate. Though depending on the actual scene, graphics hardware and driver, in the worst
case simply employing four times as many level-i micropatches may even be almost as fast as
preparing microrect textures and using microrects from level i+1. In such settings, completely
resorting to micropatches can thus prove the better option.

4.5.4 Biasing problems

When light blockers are approximated with a piecewise-constant reconstruction like micro-
patches, a bias is usually required to avoid self-occlusion.9 It is added to the actual depth of
a micropatch, essentially pushing the micro-occluder below the surface part it represents (see
Fig. 4.15 on page 47), to ensure that any point on this surface part is considered to be closer
to the light source when compared against the micropatch. The amount of bias necessary for
a certain micropatch depends on the scene geometry that is visible to the shadow map origin
and projects into the shadow map texel corresponding to the micropatch. In practice, only the
triangle sampled by the center of this texel is considered and a function of its depth slope is
used to derive the bias.

Note that while a biased depth value is required during depth comparison with the point
for which light visibility is determined, the unbiased depth should be used for constructing
the actual micropatch that gets backprojected. Otherwise, the occluder represented by the mi-
cropatch is not correctly accounted for because an offset in depth changes the backprojection
on the light source and hence the caused occlusion. Since the needed bias is specific to eachmi-
cropatch, it has to be stored explicitly in addition to the depth in the shadowmap. Alternatively,
to avoid this overhead, a constant bias may be employed for all micropatches, accepting that it
is typically not appropriate for all of them. At the same time, a certain fixed bias value can be
too small for some micropatches, causing surface acne, and too large for other micropatches,
resulting in missed close-by occluders and hence making contact shadows appear detached.

The bias problem is further exacerbated when using coarser levels and deriving these via
minimum aggregation. Since a coarser micropatch represents a larger surface part and this
typically spans a bigger depth range, a larger bias becomes necessary to move the micropatch
below the surface. Again, one may simply employ a constant bias, which, however, should be
specific to each level. Note that the popular but incorrect approach of adding a bias to the depth
value when creating the shadow map precludes adapting the bias at coarser levels (except for
adding a constant).

Better results are obtained if a bias is explicitly stored for each micropatch. To derive these
bias values for coarsermicropatches, a simple heuristicmay be employed.Wefirst assume that a
level-0micro-occluder at depth z andwith bias b represents a section of a slanted plane covering

9For robustness reasons, a constant marginal bias is always advisable because limited numerical accuracy may
cause even logically identical points to differ slightly.
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the depth range [z−h, z+b], where h = b. Then, two neighboring micropatches with depths z1
and z2 as well as bias values b1 and b2 are considered to belong to the same surface if their depth
ranges overlap. In this case, their aggregation with new depth z = mini{zi} is assigned a bias
b = max(∣z1 − z2∣ + b f , bc), where c = argmini{zi} identifies the closer of the two patches and
f = 3− c the farther one. Since the depth range covered by the newmicro-occluder is no longer
centered at z, the height h = max(hc , h f − ∣z1 − z2∣) must be derived and stored separately.
On the other hand, if the depth ranges of the two adjacent micropatches don’t overlap, bias
b = bc and height h = hc are just taken from the closest of them. This essentially enlarges the
closer micropatch and causes the farther one to be shadowed by it. In practice, the sketched
procedure has to be done with all four level-imicropatches that are aggregated to a micropatch
of level i + 1.

For simplicity and following the reasoning presented above, we decided to employ just a
constant bias in our implementation. However, it is important to be aware of the resulting lim-
itations and to choose the concrete bias carefully.

4.6 Visibility interpolation for multisample support

Overall visual quality of rendered scenes can often profit from using multisample antialiasing
(MSAA) [8]. Here, several multisamples are distributed across a pixel, and when rendering a
primitive, the rasterizer determines which of them are covered by this primitive as well as the
associated depth values.The pixel shader, however, is only invoked for a single sample per pixel
(typically the center). The resulting color value is then assigned to all covered multisamples.
Since potentially expensive shading computations are hence performed at the same frequency
as in a standard single-sample setup, and recent graphics hardware features fast support for
deriving and dealing with multisamples, typically almost no performance overhead is incurred
by employing MSAA.

Incorporating soft shadows in such multisample settings can, in principle, directly be done
by putting both shading and all soft shadow mapping computations into a single big pixel
shader that gets executed when rendering the scene. Note that an initial depth-only render-
ing pass should be performed to avoid carrying out expensive soft shadow computations for
finally overdrawn fragments. However, this straightforward approach usually leads to a low
utilization of GPU resources because of little effective concurrency, especially in case of highly
tessellated scenes, and hence entails significantly increased frame times.Moreover, it is not pos-
sible to decompose soft shadow computations into multiple steps and use intermediate values
from neighboring pixels, as required by advanced schemes like the one presented in Sec 5.2.

Alternatively, a deferred shading approachmay be pursued where inputs to the soft shadow
computation, like color and world-space position, aremultisampled. A pixel shader then deter-
mines light visibility for each (unique) multisample and derives the final pixel color. Compared
to a single-sample setup, however, this causes soft shadows to be computed multiple times per
pixel, and hence runs counter to one core idea of MSAA, the restriction of shader execution to
one sample per fragment. Assuming 4×MSAA, for instance, (up to) four times as much work
as in the single-sample case has to be done. We hence would have to resort to the next coarser
level when constructing micro-occluders, reducing their number by a factor of about four, to
roughly maintain the frame rate achieved in the single-sample setup. Also note that decom-
posing soft shadow computations into multiple steps, though possible now, implicates similar
cost increases.
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(a) Without visibility interpolation (b) With visibility interpolation

Figure 4.31 Combining multisample rendering with single-sample visibility determination
yields good results when visibility is interpolated from neighboring samples.

Since these solutions introduce additional costs far too high to pay for MSAA support, we
adopt a different strategywhere, in the spirit ofMSAA, light visibility is determined only for one
sample per pixel and the results are reused for all other multisamples. While we hence accept
minor imprecisions at the sub-pixel level, which, however, don’t introduce noticeable artifacts,
this approach allows maintaining the soft shadow quality known from the single-sample setup
without substantially increasing frame time.

At first, the scene is rendered as usual, outputting color and linear (camera-space) depth
into multisample buffers.10 After that, for each pixel, a single multisample value zc is picked
from the multisample camera depth buffer and stored in an ordinary texture. We then run
our soft shadow mapping algorithm with these depth values as input, initially reconstructing
the corresponding points’ world-space positions from them. Note that since exactly one sam-
ple gets considered per pixel, this soft shadow computation step is identical to the one in the
single-sample rendering case. The resulting light visibility values are written into a visibility
buffer, which is subsequently applied to the multisample color buffer with a custom resolve. In
this computation of the final pixel color from the multisamples, we interpolate single-sample
visibility for those multisamples for which no visibility has been determined explicitly.

More concretely, for all multisamples of a pixel whose camera-space depth difference is
within a certain threshold τ with respect to the pixel’s multisample chosen for visibility com-
putation, we simply adopt the visibility value of this multisample, assuming they belong to the
same surface region. Typically, the vast majority of pixels consist solely of multisamples satis-
fying this criterion, not least because a pixel’s multisamples only differ in value if more than
one primitive partially covers the pixel. For the remaining multisamples, which deviate from
the pixel’s selected zc value by more than τ, we additionally look at neighboring pixels and take
that visibility value whose corresponding camera depth value zc is closest to the multisample’s
one.
10Note that the depth is written by the pixel shader and hence corresponds to the same sample point as for

which shading is computed.
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As shown by the example in Fig. 4.31, we obtained good visual results when considering
a four-neighborhood (direct neighbors in x and y direction) for visibility interpolation and
always picking the first multisample of a pixel for the single-sample soft shadowmapping com-
putation. However, note that for extremely fine structures, like twigs with sub-pixel diameter,
more sophisticatedmethods for selecting the representativemultisamplemay be worth explor-
ing.

Concerning performance, measurements over a range of scenes of different complexity
suggest that with our scheme multisampling introduces an overhead of less than 9% (on an
NVIDIA GeForce 8800 GTX). Note that multisampling itself, i.e. without applying our tech-
nique, already accounts for an impact of about 5% on the frame time. Consequently, soft shad-
ows for multisample rendering become possible at low extra cost compared to single-sample
setups with our visibility interpolation approach.

4.7 Results and conclusion

Adopting the basic soft shadowmapping approach as starting point, we introduced techniques
in this chapter which improve the visual quality and performance of soft shadows. Most no-
tably, we presented occlusion bitmasks as a robust and correct solution to the fundamental
occluder fusion problem. Recall that this method is not restricted to soft shadow mapping but
is applicable to soft shadow algorithms in general.

As demonstrated in Fig. 4.32, overocclusion artifacts due to overlapping micro-occluders,
which are often experienced when deriving visibility with simple area accumulation, are com-
pletely avoided by our bitmask soft shadows. Consequently, the visual quality is significantly
enhanced, with the produced soft shadows being reasonably close to the reference. Further
improvements may be achieved by considering additional shadow maps for micro-occluder
construction, which becomes possible thanks to occlusion bitmasks.

Nevertheless, some deviations from the exact soft shadows typically remain owing to the
approximations made for performance reasons. First, instead of the actual occluder geometry
only micro-occluders extracted from a shadowmap (or multiple maps) are employed to derive
light visibility. They often merely capture a subset of the real occluders and even these parts
are only approximately reconstructed from taken samples. In principle, increasing the shadow
map resolution and acquiring additional shadow maps can reduce related approximation arti-
facts. Another obstacle is the assumption made that micro-occluders adjacent in shadow map
texture space belong to the same macro-occluder. Motivated by the lack of further informa-
tion, this conservative choice ensures that no light leaks occur. But, on the other hand, it may
also wrongly fill actual holes between two occluders and hence introduce a non-existent oc-
cluder, causing overocclusion. Finally, discretization artifacts may arise, since the visibility is
determined by point sampling the light source. Again, increasing the number of samples can
ultimately alleviate such problems.

Another ingredient affecting visual quality is thewaymicro-occluders are constructed from
the shadowmap.Ourmicroquad approximation is typically superior to the simplermicropatch
variant, as shown in Fig. 4.33. Offering a piecewise-(bi)linear interpolation and hence causing
the backprojections of adjacent micro-occluders to abut, microquads result in considerably
fewer overlaps than micropatches in the first place. Consequently, overocclusion artifacts due
to overlapping micro-occluders are greatly reduced compared to micropatches when deter-
mining visibility via area accumulation. In case of occlusion bitmasks, microquads are signif-
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(a) Reference (1024 shadow maps) (b) Area accumulation

(c) Occlusion bitmasks (d) Occlusion bitmasks with two depth layers

Figure 4.32 Area accumulation causes overocclusion artifacts due to incorrect occluder fu-
sion. By contrast, occlusion bitmasks produce results which are reasonably close to the refer-
ence. These can be further improved by using a second shadow map as input to account for
previously missed occluders.

icantly more complex to process but our cheap approximations yield results which usually are
hardly discriminable from the accurate solutions. Since microquads typically provide a better
fit to the underlying occluder geometry, the resulting soft shadows are closer to the reference
than in case of micropatches. The tendency of microquads to somewhat underestimate the ex-
tent of the represented occluder, contrasting the micropatches’ more pronounced bias towards
overestimation, can be alleviated by augmenting them with microtris, thus further improving
approximation quality.

Concerning performance, note that the actual frame rate not only depends on the graphics
hardware, the viewport and the shadow map size, but also on the scene content and camera
placement. In particular, the geometric relations of receivers, occluders and light source di-
rectly influence the number of micro-occluders that affect light visibility for a certain pixel. If
the corresponding search area gets extremely large, comprising tens of thousands of shadow
map texels, the attained performance will become very low, eventually dropping even below
interactivity. Therefore, to retain real-time frame rates, in practice the number of considered
micro-occluders is capped by imposing an upper limit, and in order to meet this budget, a
coarser level is employed for constructing fewer but larger micro-occluders. It is also impera-
tive to avoid micro-occluder processing for points which lie in umbra or completely lit regions
and to keep the search area tight for the remaining points. Acceleration structures like our YSM
are central towards achieving such a high work efficiency.
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(a) Reference (b) Micropatches, (c) Microquads, (d) Microquads & -tris,
(1024 shadow maps) area accumulation area accumulation area accumulation

(e) Micropatches, (f) Microquads, (g) Microquads, (h) Microquads & -tris,
occlusion bitmasks approximate bitmasks exact bitmasks exact bitmasks

Figure 4.33 A grid of 33 spheres and its soft shadows rendered with various methods. While
simple area accumulation yields visible artifacts due to overlappingmicro-occluders, especially
when using micropatches as occluder approximation, these are avoided by occlusion bitmasks
(the jittered 16×16 sampling pattern was employed).

To provide some rough idea of the attainable performance, we consider the three example
scenes shown and characterized in Table 4.2. For each of them, frame rates for various combi-
nations of employed micro-occluders, used visibility determination approach and utilized ac-
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Example I (Fig. 4.16) Example II Example III (Fig. 4.10)

Viewport 1024×768 1024×768 1600×1200
Shadow map size 10242 10242 20482
Micro-occluder budget 256 256 400

Processed pixels (HSM) 16.2% 28.4% 32.0%
Processed pixels (YSM) 5.1% 6.4% 11.6%

Table 4.2 Three example scenes with soft shadows and the employed configurations. More-
over, the percentage of pixels which are not classified as in umbra or entirely lit and for which
hence micro-occluders have to be processed is listed, both for the HSM and the YSM.

Micro-occluders Visibility determination Accel. Ex. I Ex. II Ex. III

Micropatches Area accumulation HSM 88 Hz 56 Hz 16 Hz
Micropatches Area accumulation YSM 122 Hz 62 Hz 29 Hz
Micropatches Occlusion bitmasks YSM 68 Hz 38 Hz 15 Hz

Microquads Area accumulation HSM 85 Hz 53 Hz 14 Hz
Microquads Area accumulation YSM 122 Hz 62 Hz 28 Hz
Microquads Occlusion bitmasks (approximate) YSM 70 Hz 39 Hz 14 Hz
Microquads Occlusion bitmasks (lookup texture) YSM 19 Hz 14 Hz 4 Hz

Microquads & -tris Area accumulation YSM 59 Hz 36 Hz 12 Hz
Microquads & -tris Occlusion bitmasks (lookup texture) YSM 15 Hz 11 Hz 3 Hz

Table 4.3 Performance for the three example scenes achieved on an NVIDIA GeForce GTX
280. In case of occlusion bitmasks, the jittered 16×16 sampling pattern was used.
celeration structure are reported in Table 4.3. First note that the figures clearly indicate that our
YSM is far superior to the HSM. Despite its somewhat larger construction time (cf. Table 4.1
on page 43), the YSM consistently yields a higher frame rate, especially thanks to effectively
identifying umbra and completely lit points and thus keeping the number of pixels small for
which micro-occluders have to be processed.

As can be expected, using occlusion bitmasks for visibility determination certainly has a
negative performance impact. However, it is worth noting that when employed together with
the YSM, frame rates are often not that much lower than in case of “classical” soft shadow
mapping with HSM-guided area accumulation, while visual quality is considerably improved.

Microquads turn out to be roughly as fast to process as micropatches, not only in case of
area accumulation but even with occlusion bitmasks, at least when determining them using the
clipping-by-clamping and rectangle approximations. By contrast, deriving the bitmask corre-
sponding to a microquad’s accurate occlusion footprint incurs a significant overhead, mainly
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caused by the convex hull determination and the texture lookups for the half-spaces defined by
the hull’s edges. Given the typically minor resulting improvement in visual quality, we hence
strongly advocate always using our approximate scheme unless important reasons justify the
additional cost.

Similarly, the augmentation with microtris slightly enhances visual quality compared to
solely using microquads, but also considerably reduces performance. Therefore, to maintain
real-time frame rates without having to reduce the micro-occluder budget, one usually may
refrain from employing this extension. In some cases, however, the gained detail coverage,
especially noticeable for small occluders, as well as the improved smoothness of the approx-
imated macro-occluder silhouettes make microtris a viable instrument. Also please note that
while it may appear that exact microquad occlusion processing and adding microtris are often
a needless luxury, the availability of these options is essential to be able to assess the quality
of the approximate occlusion bitmask solution for microquads and of microquads in general,
respectively.



CHAPTER 5

Level of quality for soft shadows

As detailed in the last two chapters, the objective of real-time performance currently forces
algorithms for rendering soft shadows to impose constraints on the scene that enable simpli-
fications and precomputations, or to introduce approximations. In the latter case, the quality
of the produced soft shadows is affected by the kind and degree of the approximation, with its
associated cost influencing frame rate.

Ideally, the level of quality (LOQ) of the rendered soft shadows is directly related to the spent
computational efforts and can be adapted to flexibly meet some prescribed budget like allotted
frame time. Since often a lower soft shadow quality is accepted in some regions of a scene
than in others, and we typically seek to achieve the highest possible overall perceived visual
quality for a given budget, it is further desirable to allow controlling LOQ locally in screen
space. Note that to avoid visual artifacts in such settings, the resulting quality transitions have
to be sufficiently smooth.

In this chapter, we present one practical LOQ scheme for the concrete approach of soft
shadow mapping which addresses these requests. Initially, to explore the solution space and
provide motivation for the choices finally made, we discuss possible ways of realizing a LOQ
scheme for soft shadows. Subsequently, our actual approach for soft shadow mapping is de-
scribed. Because this is ultimately based on adapting the shadow map level used for micro-
occluder construction, the presented solution also particularly handles the remaining issue of
transition artifacts at pixels using different levels (cf. Secs. 4.1 and 4.5.3).

5.1 Possible approaches

Recall from Sec. 2.4 that a common approach taken for geometry is to resort to a coarser level
of detail (LOD) in order to meet a given frame time, thus trading visual quality for speed. Most
flexibility and adaptability is offered by view-dependent LOD schemes [165, 237], where the
geometric detail can be changed locally, allowing finer detail at silhouettes without having to
apply the corresponding LOD to the whole model.The transition between two LODs is usually
smoothed either by some form of alpha blending [139] or via geomorphing [164]—at least
when the difference would be visible otherwise.

While (conceptually) many similarities to such techniques for geometry exist, approaches
for adapting the LOQ when rendering soft shadows also face some significant differences. For
instance, geometric LOD is associated with and affects only a single scene object or group of
objects. By contrast, soft shadows are a global effect that spans and involves multiple scene
objects, and thus a corresponding LOQ generally cannot be realized on a per-object basis but
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has to be defined in screen space. Moreover, in contrast to geometric LOD methods, which
usually heavily depend on them, leveraging offline preprocessing steps is not possible, unless
some restrictions are imposed, like requiring a strict partition of the set of scene objects into
shadow casters and shadow receivers. Concentrating on the general setting, where such sim-
plifying constraints are foreclosed, we briefly discuss a wide range of possible approaches for
soft shadow LOQ in the following subsections.

5.1.1 Multiple algorithms producing different quality

One seemingly straightforward option to tackle soft shadow LOQ is switching the algorithm
employed for producing soft shadows, with each LOQ being defined by a distinct algorithm.
Unfortunately, such a scheme only allows of discrete LOQbecause a smooth transition between
the results of different soft shadow algorithms is usually not feasible owing to incompatible
assumptions, simplifications and approximations.

For instance, faking soft shadows by just smoothing depth comparison results with percent-
age-closer filtering might seem a good candidate for a lower LOQ. Assuming some simple soft
shadowmapping variant with micropatches and area accumulation constitutes the next higher
LOQ, it becomes important for the PCF approach to spatially vary the filter kernel size to ac-
count for non-uniform penumbra widths like encountered in shadow hardening on contact.
Although both filtering with screen-space-local kernel sizes and heuristically deriving these
sizes have recently become possible at high frame rates [11], a smooth transition to soft shadow
mapping is still not feasible in general. Apart from the employed heuristic being far from robust,
this is mainly because of fundamentally conflicting ways of attributing occlusion to a shadow
map texel. Recall from Sec. 3.2.1 that the PCF approach only takes into account the result of
depth comparisons but not whether the used samples actually occlude the light or get projected
next to it. Also the implicit assumption that the fraction of the light source that is occluded by
a sample is given by its PCF filter weight is incompatible with micro-occluder approximations.

Note that evenwithout these problems, smoothly changing the LOQwould require running
both involved algorithms and blending their results. However, we acknowledge that for several
applications a discrete LOQ scheme suffices, like in selecting a LOQ during start-up to adapt
to different hardware setups or in the special case where all shadow-receiving regions are dis-
joint and the same LOQ is used throughout a region. But even then, it is unclear how to order
the algorithms in question concerning both quality and expected render time. For instance,
we observe that one algorithm which excels in situation A might fail miserably for scene B,
whereas another algorithmmight show average quality for both, i.e. relative orderings may not
be consistent across scenes. In addition, even algorithms yielding soft shadows of lower quality,
like PCSS [122], can take a considerable amount of time, further limiting the practicability of a
multi-algorithm LOQ approach. Therefore, we will only consider LOQ schemes using a single
algorithm in the remainder of this chapter.

5.1.2 Geometric occluder LOD

When operating directly on the occluder geometry, another option to provide soft shadow
LOQ is to apply a geometric LOD scheme to the occluders. Ultimately, for each pixel in a
soft shadow region, a separate view-dependent LOD of the occluder geometry that is consis-
tent across neighboring pixels is desired. Since providing this pixel-wise LOD would incur a
tremendous cost, in practice simpler schemes have to be adopted. Unfortunately, this is only
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reasonable if objects are classified as either shadow casters or shadow receivers, since otherwise
problems exist with self-shadowing and when a caster and a receiver are in contact.

Actually, Ren et al. [313] perform such a kind of occluder LOD when determining soft
shadows cast by low-frequency environmentmaps.They approximate light blockers by a sphere
hierarchy and utilize the solid angle subtended by a blocker to select the hierarchy level for
deriving the occlusion caused by this blocker at a certain receiver point. However, asmentioned
in Sec. 3.2.4, the sphere approximation negatively impacts the attainable soft shadow quality,
in particular that of visually important contact shadows.

Note that one might argue that employing different shadow map levels for micro-occluder
construction constitutes some kind of LOD scheme for the occluder geometry reconstructed
from the shadowmap. On the other hand, soft shadowmapping simply chooses a certain level
when determining light visibility for a pixel, and hence does not even select an occluder-specific
LOD but just picks the same LOD for all occluders.

5.1.3 Sparse visibility sampling

Because light visibility often varies rather smoothly in penumbra regions, one may adapt LOQ
by performing the visibility evaluation not per pixel but according to a sparser sampling with
a subsequent interpolation step.

A very simple such approach is to use a lower image resolution for determining light vis-
ibility with the adopted soft shadow algorithm. For example, DeCoro and Rusinkiewicz [90]
first render the unshadowed shaded scene in a full-resolution color buffer, also storing associ-
ated normals and depth values. Approximating environmental lighting with many point lights,
they subsequently determine light visibility at a reduced resolution for each light, derive the
light’s shading contribution at shadowed receiver pixels, and accumulate these surplus shad-
ing portions (i.e. excessively reflected radiance) in a shadow buffer. This is then resampled to
full resolution utilizing normal and position information, and finally subtracted from the un-
shadowed color buffer to obtain the shadowed and shaded result. Note that, at least in this
concrete algorithm, the sparser shadow buffer samples are different from (any subset of) the
full-resolution image points.This implies having to render the scene again to determine the re-
ceiver sample points for visibility computation, unlike in case of subsampling. A further, more
general disadvantage is that the soft shadow LOQ cannot vary across screen but is constant as
determined by the chosen lower resolution.

Whereas such a uniform sampling density treats all penumbra regions equally irrespec-
tive of their extent and hence may undersample thin penumbrae while at the same time over-
sampling large ones, more sophisticated techniques provide a better adaptivity to the actual
penumbra sizes. For instance, Guennebaud et al. [148] successfully implemented a sparse sam-
pling scheme for their soft shadow mapping algorithm, enabling high speed-ups. They derive
an estimate of the penumbra’s screen-space footprint and employ it to adjust the sampling den-
sity by appropriately skipping visibility computations for some pixels.The resulting subsampled
visibility solution is then subjected to a pyramidal pull-push reconstruction to determine the
final soft shadows. Since the relative sparseness is guided by a parameter (called smin by them)
that is fixed throughout the screen, the LOQ can only be influenced globally. Note that with in-
creasing sparseness objectionable patterns can appear with this approach, as closer inspection
of the published result images demonstrates. Because the underlying sparse sampling pattern
is fixed in screen space, these patterns can be expected to become particularly noticeable in
animated scenes.
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More generally, it is unclear whether smoothly varying relative sparseness—sparseness rel-
ative to the (spatially varying) sample density required for a certain quality—suffices to allow
smooth LOQ transition or whether blending between the results obtained for two different
sampling sparsenesses is required.

5.1.4 Intrinsic algorithm parameters

Another option for realizing soft shadow LOQ is to vary an intrinsic parameter of an algo-
rithm that affects quality. In case of soft shadow mapping, varying the bit field size and adapt-
ing the complexity of the bitmask’s sampling pattern (completely regular, regularly jittered, or
random) are possible choices when using occlusion bitmasks. Again, smooth LOQ transitions
would require alpha blending. Employing varying numbers of shadow maps or switching be-
tween area accumulation and occlusion bitmasks also constitute quality alteration parameters,
which, however, pose problems similar to those in multi-algorithm LOQ schemes concerning
blending.

The most promising parameter is the shadow map level and hence the virtual shadow map
resolution used, which is somewhat related to the geometric LOD of the occluders.1 Ideally,
we want a hierarchical occluder representation derived from the shadow map which allows
smoothly varying soft shadow LOQ by blending between two hierarchy levels and computing
light visibility for the resulting intermediate occluder representation instead of having to blend
the visibility results for the two discrete hierarchy levels.

The microquad approximation might seem like a natural candidate because it can be con-
sidered a geometry image [146] of the occluder/receiver surface as seen from the light that
trivially supports geomorphing. However, it turns out that deriving coarser-level vertices can-
not be done by mere subsampling but must perform some kind of minimum aggregation of
the light depth values.This is also one reason why the seemingly obvious relationship to vertex
clustering [318] is actually rather weak. The major obstacle which prevents microquads (and
supposedly any occluder representation) from achieving the desired ideal is the binary decision
of whether they get backprojected or not. Recall that a microquad is only considered if all four
vertices are closer to the light source than the shadow-receiving point p. Therefore, while ge-
omorphing between two levels causes a smooth transition of the involved microquads, once a
vertex crosses the depth level of p, the correspondingmicroquad abruptly becomes included or
excluded, respectively, from backprojection, i.e. the LOQ is not transitioning smoothly. Con-
sequently, adapting the shadow map level requires alpha blending for smooth LOQ variations.

5.2 Smooth quality variation for soft shadowmapping

Carefully considering the options discussed in the preceding section, we decided to base our
LOQ scheme for soft shadow mapping on the shadow map level employed for micro-occluder
construction. Recall that choosing a coarser level reduces the number of micro-occluders that

1Note that adapting the shadow map resolution is a popular choice for trading quality against effort and re-
quired resources in case of hard shadows. A nice example are fitted virtual shadowmaps [138], which try to ensure
that throughout the screen the ratio of a pixel’s size projected into shadow map texture space and a shadow map
texel satisfies some upper bound. To this end, the scene is decomposed into screen-space tiles, and (conceptually)
for each a separate shadow map of optimal resolution is employed. A global quality-vs-performance parameter
(called ξ) is offered which affects the highest pixel/texel ratio deemed acceptable and thus controls the effective
shadow map resolution, hence the encountered aliasing, and ultimately the quality.
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0 1 2
Level

Figure 5.1 Transition artifacts (e.g. see zoom-ins) can occur with soft shadow mapping if
varying shadowmap levels are employed across pixels for micro-occluder construction and no
blending is performed.

need to be processed and hence increases performance. At the same time, soft shadow quality
typically degrades because fewer but larger micro-occluders are utilized for representing the
actual light blockers, thus often raising the approximation error. Lower quality manifests itself
in decreasing smoothness and detail in the shadow shape, as well as in growing or shrinking
shadow regions, with the magnitude of change partially depending on whether micropatches
or microquads are used.

As detailed in the last chapter, soft shadow mapping algorithms routinely choose the finest
shadow map level at which the search area satisfies some user-specified upper bound on the
number of encompassed micro-occluders in order to ensure real-time frame rates. However,
since the level employed can vary across the pixels in a soft shadow region, transition artifacts
may appear due to changing blocker approximations, as exemplified in Fig. 5.1. Consequently,
note that the ability to smoothly vary the quality across screen is actually a requirement for
the practical employment of soft shadow mapping algorithms, because manually choosing an
appropriate micro-occluder budget that renders transitions unnoticeable cannot really be con-
sidered a viable alternative.

To realize a smooth variation of quality, we make the shadowmap level a continuous quan-
tity, and determine light visibility by considering the two closest integer shadow map levels
and combining the results obtained for them via alpha blending. Note that this decision is in
line with the observations from the previous section. In particular, as unsatisfying as it may
be, alpha blending appears to be unavoidable when smooth soft shadow quality transitions are
required.

The main challenge is to determine a real-valued shadow map level ℓ that varies contin-
uously across a soft shadow region, with the fractional part driving the alpha blending. In a
previous approach, Guennebaud et al. [148] suggest deriving ℓ from a continuously varying
estimate of the closest occluder’s depth obtained by linearly filtering the HSM.They hence im-
plicitly assume that neighboring fragments sample the same HSM level when determining the
depth range during search area refinement. In general, however, this assumption is not true and
fails in particular if a more accurate acceleration structure like the YSM is used. As a conse-
quence, discontinuities concerning ℓ are introduced which can manifest themselves as visible
artifacts despite alpha blending.
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Figure5.2 Overview of our approach for smooth soft shadowquality variation. 1 Taking the
local micro-occluder budget into account, at first the search area and the (real-valued) shadow
map level ℓ are determined for each pixel. 2 The resulting LOQmap is subsequently smoothed
before 3 visibility is determined, performing alpha blending if necessary. 4 Finally, the visi-
bility values are applied to the color buffer.

5.2.1 Approach

Our approach [336] for achieving a smooth soft shadow quality variation is summarized in
Fig. 5.2. At its core is determining a real-valued level ℓ per pixel for micro-occluder construc-
tion such that ℓ and hence quality change continuously within a soft shadow region. Apart
from tackling the above-mentioned shortcomings of previous approaches, we particularly also
allow adapting the shadow quality according to screen-space-local features, like high texture
masking or varying importance as assigned by the user or derived by perceptually motivated
algorithms. To this end, a budget map is provided as input which stores for each pixel (x , y)
the maximum number b(x , y) of micro-occluders that the search area at the finally employed
level ℓ should comprise.2 By spatially varying the budget b(x , y), soft shadow quality can be
locally increased or decreased.

Since ensuring the smoothness of ℓ within a soft shadow region involves considering a
pixel’s neighborhood, our algorithm is realized as a deferred shading technique, with textures
providing both the shading result (in a color buffer) and world-space position (indirectly via a
linear camera-space depth buffer) for each pixel. Furthermore, search area pruning andmicro-
occluder processing are performed in separate passes to enable inserting a non-pixel-local
adaptation phase that establishes smoothness.

In a first step, we utilize the chosen acceleration structure for the acquired shadow map to
determine for each pixel whether it is in umbra or completely lit and if not, the relevant search
area for micro-occluders. Taking the pixel’s budget b(x , y) from the input budget map into
account, we then derive an appropriate real-valued shadow map level ℓ. The search area and ℓ
are stored in two textures, referred to as search area buffer and LOQmap, respectively, for later
use. Because the determined ℓ values don’t necessarily vary smoothly across the screen, in a
next step a smoothing filter is applied that respects geometric discontinuities. For performance
reasons, we resort to a variant of separable bilateral filtering [297], where the smoothing ker-
nel stops at depth discontinuities and at the interface to regions where no backprojection is
required.

2In practice, we actually use ⌊√b(x , y)⌋ as upper bound along each axis of the rectangular search area.
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Subsequently, using the previously derived search area from the same-named buffer and the
filtered ℓ value from the LOQ map, we perform the actual backprojection to determine light
visibility. Note that unless the blendweight α(ℓ) is integer, micro-occluder processing has to be
done both for level ⌊ℓ⌋ and for level ⌈ℓ⌉, with the resulting visibility values then being linearly
blended according to α(ℓ). Finally, the computed light visibility is applied to the input color
buffer to incorporate soft shadows into the shaded scene.

5.2.2 Discussion

While the specified micro-occluder budget b is satisfied by the initially derived level ℓ, this
may no longer be the case after smoothing the LOQ map. Moreover, not real-valued but in-
teger levels are processed, and when the next finer level ⌊ℓ⌋ is employed, typically the budget
is violated, with up to roughly 4b micro-occluders getting considered. In particular, if alpha
blending is required, both level ⌈ℓ⌉ (where usually at most b micro-occluders get processed)
and level ⌊ℓ⌋ have to be taken into account, further exceeding the budget. Therefore, note that
b only serves to guide the level of quality by specifying the size of the micro-occluders relative
to the search area extent but it is not a strict upper bound on the number of actually processed
micro-occluders.

Since alpha blending is particularly expensive (if α(ℓ) ∉ {0, 1}), involving visibility deter-
mination for two levels, it is desirable to keep the transition region small where not just either
level ⌈ℓ⌉ or ⌊ℓ⌋ is employed but a combination of both of them. For instance, Guennebaud et
al. [148] suggest restricting blending to within a region of Δℓ = 0.1 for practical use. However,
our experience shows that while this might be acceptable in static images, the resulting thin-
ner blending regions often become visible in animated settings. Furthermore, severe artifacts
can show up in regions where transitions between multiple levels occur within a very small
neighborhood if the blending region is chosen too narrow. Hence, for maximum robustness,
we always perform alpha blending. Note that consequently, a good classification of umbra and
completely lit regions becomes even more important, i.e. using the YSM is highly advisable.

Compared to normal soft shadowmapping, our LOQscheme features three sources of over-
head. First, due to distributing the calculations over several shaders, texture reads and writes to
the search area buffer and the LOQmap, as well as accesses to the budget map are introduced.
However, we didn’t observe any measurable performance penalty (on an NVIDIA GeForce
8800GTX), probably because the effective parallelism of pixel shader executions and cache uti-
lization are improved by this reorganization. Second, the LOQ map is smoothed in a separate
pass. In practice, we use a filter with support 11×11, which provides a good trade-off between
speed and smoothing capability. Our measurements show that with this choice the smoothing
step takes less than 2 ms for a 1024×768 viewport (again on a GeForce 8800 GTX). Finally, if
the smoothly varying shadowmap level ℓ is non-integer, we blend the visibility results for levels⌈ℓ⌉ and ⌊ℓ⌋ and hence process more micro-occluders per pixel than with normal soft shadow
mapping, where only level ⌊ℓ⌋ is considered.Measurements acrossmany scenes and viewpoints
suggest that in practice about 30%more micro-occluders are considered on average. However,
in return for these overheads, spatial transition artifacts are successfully alleviated, enabling
the practical use of selectively lower soft shadow quality to reduce frame time.

Finally, note that similar to aliasing in standard shadow mapping, depending on the scene
configuration and the value of ℓ, the footprint of a single micro-occluder’s influence region in
screen space may be large, resulting in jaggy-like shadow boundaries. Even worse, this large
footprint can lead to swimming artifacts; that is, discontinuities in the temporal domain can
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(a) Limited budget (b = 102) (b) Always finest level (b = ∞) (c) 1024 shadow maps

Figure 5.3 Dinosaur under palm tree. Imposing some medium micro-occluder budget re-
duces soft shadow detail and quality (a) compared to unconstrained soft shadow mapping (b),
which comes pretty close to the reference solution (c).

appear once objectsmove relative to the light source and hence their rasterization in the shadow
map changes. As alreadymentioned in Sec. 4.5, this is a general side effect of employing coarser-
levelmicro-occluders to trade quality for speed.The obvious solution of increasing the effective
shadow map resolution used for micro-occluder construction is not a viable option as it runs
counter to reducing the number of micro-occluders and keeping the computational effort low.
A more reasonable method to alleviate such artifacts is to apply temporal smoothing, for in-
stance with a history buffer approach [328].

5.2.3 Results

Weconclude this chapter and the part on soft shadowswith some results. For all of them, a YSM
of size 10242/2562 was utilized, micropatches were employed and visibility was determined via
area accumulation. Note, however, that these choices are orthogonal to the presented scheme
and hence alternatives like microquads and occlusion bitmasks can be readily adopted.

(a) Feature-dependent budget (b = 52, 122) (b) Uniform budget (b = 122)
Figure 5.4 The scheme allows selectively decreasing the budget b in regions of high texture
masking (a; to b = 52 in the black region shown in the budget map inset). Compared to retain-
ing a uniformly high budget (b), this perceptually motivated work reduction increases perfor-
mance, for instance from 32 Hz to 50 Hz on an NVIDIA GeForce 8800 GTX.
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(a) Always finest level (b = ∞) (b) High uniform budget (b = 122)

(c) Low uniform budget (b = 52) (d) Varying budget (b = 52 . . . 122 . . . 52)
Figure 5.5 The soft shadow quality variation scheme enables not only smooth transitions for
screen-uniform budgets (b, c) but also readily supports local budget variations (d: b decreases
from 122 in the center to 52 at the left and right borders as shown in the inset).

Remember that the objective is to allow spatially varying quality degradationwithout intro-
ducing transition artifacts. Although a lower quality usually causes shadow shape smoothness
and detail to decrease and shadow regions to grow, the resulting soft shadows remain plausible,
as exemplified in Fig. 5.3. In particular, our approach successfully helps avoiding artifacts due
to shadow map level transitions inherent to soft shadow mapping with limited budget b. This
is further demonstrated in Fig. 5.5, showing the same scene as Fig. 5.1 (where no smoothing is
performed and which hence suffers from artifacts). The concept of a budget map additionally
allows locally adapting soft shadow quality while retaining smooth transitions. For instance,
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Scene/ Micro-occluder Frame Processed Micro-occl./pixel
result budget b rate pixels Mean St. dev.

Fig. 5.3 a 102 24.8 Hz 12.7% 194 84.8
Fig. 5.3 b ∞ 7.1 Hz 11.2% 3,632 2,166

Fig. 5.5 c 52 82.6 Hz 15.6% 33.3 13.7
Fig. 5.5 d 52–122 35.8 Hz 13.0% 164 138
Fig. 5.5 b 122 27.1 Hz 11.7% 480 313
Fig. 5.5 a ∞ 23.9 Hz 11.0% 548 351

Table 5.1 Performance quantities for two example scenes and various budgets, obtained for
a viewport of size 1024×768 on an NVIDIA GeForce 8800 GTX. The percentage of pixels for
which actual micro-occluder processing is performed, and the mean and standard deviation of
the number of processed micro-occluders for these pixels characterize the required computa-
tional effort. Note that in case of an unconstrained budget (i.e. b = ∞) no LOQmap smoothing
or alpha blending is performed.

we can selectively lower soft shadow quality at screen borders (cf. Fig. 5.5 d), which may be
considered visually less important. Similarly, as shown in Fig. 5.4, the budget can be reduced
in regions of large texture masking, where a high soft shadow quality would not be noticeable,
anyway.

Table 5.1 provides some performance data for the two examples scenes in Figs. 5.3 and 5.5.
First note again that blending is required to avoid transition artifacts unless all pixels use the
same shadow map level i for micro-occluder construction. Since completely resorting to a
coarser common shadow map level is usually not a viable option because objectionable ar-
tifacts would appear where occluders and receivers touch, we compare against using the finest
level i = 0 throughout the screen (i.e. b = ∞). The reported figures show that selectively low-
ering the quality and performing blending is indeed faster than always using the finest level.
This is mainly due to having significantly fewer micro-occluders to process per pixel on aver-
age. On the other hand, the percentage of pixels which are not classified as either completely
lit or in umbra and for which hence micro-occluders actually need to be processed increases
with decreasing budget b. Being reflected in growing shadow regions, this rise originates in
the adaptation of query regions during search area pruning according to b for avoiding “over-
precision” artifacts, which causes additional pixels (close to penumbrae that would be obtained
for b = ∞) to perform actual micro-occluder processing.



PART II
Rendering of curved surfaces

79





CHAPTER 6

Fundamentals of curved surfaces

In reality, themajority of shapes are visually smooth.While it is possible tomimic this smooth-
ness by a collection of connected planar polygonal facets like triangles, such an approximation
only works satisfactorily if the facets are small enough. However, because the facet sizes re-
quired for visual smoothness depend on the visual angle covered by the surface, the illusion of
visual smoothness will eventually break down when approaching the surface. Consequently, it
is highly desirable to describe smooth surfaces directly by curved surface primitives.

A curved surface is precisely described by mathematic expressions and features a compact
representation, like a net of control points. In particular, the number of required control points
is usually rather low compared to the number of vertices in corresponding polygonal mesh ap-
proximations. Since there is also an intuitive relationship between control points and a surface’s
shape, curved surfaces are easier to work with from a modeling point of view than traditional
polygonal meshes. Moreover, many operations become simpler. For instance, it is easier and
cheaper to animate a coarse control net than to deal directly with a fine polygonal mesh.

In this chapter, we review the most important representatives of curved surface primitives.
Since our primary goal is to increase the realism in real-time rendering applications by utilizing
such primitives, a special focus is put on the relevance towards this aim and on related aspects.
We note that in practice curved surface primitives are often employed to provide a smooth
base surface to which a displacement map is then applied [209]; however, such extensions are
beyond the scope of this thesis.

To be of any practical value for real-time rendering applications, we must be able to effi-
ciently render curved surfaces. For current graphics hardware, which has no built-in support
for such primitives, tessellation-based approaches are themost suitable ones. Here, a piecewise-
linear approximation with triangular meshes is derived and rendered using the standard trian-
gle-centric graphics pipeline. Ideally, the tessellation is adaptive, generating triangles of locally
varying and always sufficiently small (but not much smaller) size to achieve visual smoothness.
This essentially comes down to creating a view-dependent level of detail.

Raycasting is another relevant rendering technique, especially for implicit surface represen-
tations. We close this chapter with a section discussing rendering approaches in more detail.
The next chapter is then devoted exclusively to GPU-assisted, real-time, adaptive, on-the-fly
tessellation, exploring major variants and aspects in depth.
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6.1 Bézier surfaces

Theprobablymost important curved surface primitives for rendering are Bézier surfaces, poly-
nomial surfaces in Bézier form.Not only canmany other primitives be decomposed into orwell
approximated by them, but Bézier surfaces also have several properties that make processing
them efficient, simple, intuitive, and also numerically stable.

Since Bézier surfaces are extensions of Bézier curves to two dimensions and inherit many
properties and concepts from them, we first briefly review the curve case. A Bézier curve

b(t) = n∑
i=0

bi Bn
i (t), t ∈ [0, 1]

is a polynomial curve of degree n expressed as linear combination of n + 1 control points bi
(0 ≤ i ≤ n), with the univariate Bernstein polynomials

Bn
i (t) = (n

i
) ti(1 − t)n−i

serving as coefficients. Because the Bernstein polynomials are non-negative (for t ∈ [0, 1]) and
sum to unity, the control points are actually combined convexly, yielding numerical stability,
especially compared to a monomial representation. Note that since the Bernstein polynomials
can be expressed recursively using convex combinations, i.e.

Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t),

a Bézier curve can alternatively be defined by repeated convex combinations of control points
(de Casteljau algorithm).

A curve’s control points are related to its shape in a meaningful and intuitive way.The end-
points are interpolated, i.e. b(0) = b0 and b(1) = bn, but in general not the interior control
points. Due to the convex combinations in its definition, a Bézier curve is always contained in
the convex hull of the control points. Note that this property enables fast bounding box com-
putations. Moreover, Bézier curves are invariant under affine transformations. Consequently,
first transforming the control points and then evaluating the curve at some parameter values is
equivalent to first performing the evaluation and then transforming the result. Further proper-
ties along with amore detailed discussion can be found in standard textbooks like Farin’s [116].

In practice, usually only the cubic case (n = 3) is considered. Lower-degree curves are un-
able to describe inflections and hence S-like shapes. Moreover, cubic is the lowest degree where
the curve is not necessarily within a plane and where prescribed endpoints and derivatives of
them can be interpolated. On the other hand, higher degrees are rarely required for computer
graphics applications.

Polynomial curves cannot describe conic sections (ellipse, parabola, hyperbola). If this ex-
pressive power is required, one has to resort to rational curves. In case of a rational Bézier curve,
each k-D control point pi is associated with a weight1wi , yielding homogeneous (k+1)-D con-
trol points bi = (wipi ,wi)T.The rational k-D curve p(t) is obtained by evaluating the (k+1)-D
polynomial Bézier curve b(t) with control points bi and performing the dehomogenizing di-
vide, i.e.

p(t) = ∑n
i=0wipi Bn

i (t)∑n
i=0wi Bn

i (t) .

1In the rest of the thesis, we always implicitly assume all weights to be positive.
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Figure 6.1 Bicubic tensor-product Bézier patch.

Most properties from polynomial Bézier curves, like endpoint interpolation and the convex
hull property, also hold in the rational case. Furthermore, in addition to affine invariance, ra-
tional Bézier curves are even invariant under projective transformations.

6.1.1 Bézier patches

One way to generalize Bézier curves to surfaces is by building the tensor product of two Bézier
curves. That is, a surface is swept out by moving an m-degree Bézier curve with the trajectory
of each control point being described by an n-degree Bézier curve. A (tensor-product) Bézier
patch of degree m × n has a rectangular parameter domain [0, 1]2 ∋ (u, v) and is defined as

b(u, v) = m∑
i=0

n∑
j=0

bi j Bm
i (u)Bn

j (v) = m∑
i=0

( n∑
j=0

bi j Bn
j (v))Bm

i (u) = n∑
j=0

( m∑
i=0

bi j Bm
i (u))Bn

j (v),
with the grid of control points bi j (0 ≤ i ≤ m, 0 ≤ j ≤ n) specifying the shape.

By construction, each boundary curve is a Bézier curve of degreem (b(u, 0) and b(u, 1)) or
n (b(0, v) and b(1, v)), respectively. Properties inherited from the curve case include corner-
point interpolation, the convex hull property as well as affine invariance. Again, the bicubic
case (m = n = 3; cf. Fig. 6.1) is the most relevant one in practice. A famous example of a model
composed of bicubic Bézier patches is shown in Fig. 6.2.

The partial derivatives required for calculating the surface normal are given by

bu(u, v) = m
m−1∑
i=0

n∑
j=0

(bi+1, j − bi , j)Bm−1
i (u)Bn

j (v),
bv(u, v) = n

m∑
i=0

n−1∑
j=0

(bi , j+1 − bi , j)Bm
i (u)Bn−1

j (v).
Note that they are themselves Bézier patches of degree (m−1)×n andm×(n−1), respectively.
Similarly, the second-order partial derivatives are

buu(u, v) = m(m − 1)m−2∑
i=0

n∑
j=0

(bi+2, j − 2bi+1, j + bi , j)Bm−2
i (u)Bn

j (v),
bvv(u, v) = n (n − 1) m∑

i=0

n−2∑
j=0

(bi , j+2 − 2bi , j+1 + bi , j)Bm
i (u)Bn−2

j (v),
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(a) Control net (b) Bicubic Bézier patches

Figure 6.2 Example model Utah/Newell teapot (actually scaled by 10/13 in height). Control
faces belonging to the same patch are colored identically.

and the mixed partial derivative is

buv(u, v) = mn
m−1∑
i=0

n−1∑
j=0

(bi+1, j+1 − bi+1, j − bi , j+1 + bi , j)Bm−1
i (u)Bn−1

j (v).
Analogous to the curve case, a rational Bézier patch

p(u, v) = (b(u, v))xyz(b(u, v))w = ∑m
i=0∑n

j=0wi jpi j Bm
i (u)Bn

j (v)∑m
i=0∑n

j=0wi j Bm
i (u)Bn

j (v) = P(u, v)
W(u, v)

can be defined by using homogeneous 4D control points bi j = (wi jpi j,wi j)T resulting from
enriching each 3D control point pi j with a weight wi j. The partial derivative

pu(u, v) = (bu(u, v))xyz − (bu(u, v))w p(u, v)(b(u, v))w = W(u, v)Pu(u, v) −Wu(u, v)P(u, v)
W(u, v)2

is obtained by the chain rule; pv(u, v) can be determined analogously. The (unnormalized)
surface normal is then n(u, v) = pu(u, v) × pv(u, v). Note that pu(u, v) is a rational patch of
degree (2m − 1) × 2n in the numerator and degree 2m × 2n in the denominator. The second
partial derivative

puu(u, v) = (buu(u, v))xyz − 2(bu(u, v))w pu(u, v) − (buu(u, v))w p(u, v)(b(u, v))w
= W2 Puu − 2WWu Pu + (2W2

u −WWuu)P
W3 (u, v)

even has an overall degree of 3m × 3n. Unlike in the polynomial case, the complexity hence
doesn’t decline but rises with the number of differentiations. As a consequence, computing
bounds on the partial derivatives of a rational Bézier patch is rather expensive.



CHAPTER 6 Fundamentals of curved surfaces 85

b₂₁₀

b₀₀₃

b₁₁₁

b₁₂₀

b₀₃₀b₃₀₀

b₂₀₁

b₁₀₂

b₀₂₁

b₀₁₂

d₀₁

d₁₂d₂₀

(0,1)(1,0)

( , )u v

(0,0)

u

w

v

(a) Control points (b) Domain

Figure 6.3 Cubic Bézier triangle.

6.1.2 Bézier triangles

Bézier patches (and their spline extensions, see Sec. 6.2) are wide-spread and popular in mod-
eling, not least because the control net’s quad layout is well suited to follow parallel feature lines
often encountered in nature, architecture and engineering. However, triangular shapes occur-
ring at poles (like at the knob of the teapot’s lid in Fig. 6.2) or when feature lines merge require
collapsing a boundary curve to a single point, degenerating the patch.

Another surface primitive that generalizes Bézier curves and doesn’t suffer from this topo-
logical limitation is the Bézier triangle [88, 115]. Since it can be defined by repeated barycentric
interpolation between three control points, it is the natural extension of Bézier curves to sur-
faces, recalling that Bézier curves are obtained by repeated linear interpolation between two
control points.

The closed-form definition of a triangular Bézier patch of degree n is

b(u, v) = ∑
i+ j+k=n

bi jk Bn
i jk(u, v),

where u, v and w = 1 − u − v are barycentric coordinates of the triangular domain and

Bn
i jk(u, v) = ( n

i , j, k
)uiv j(1 − u − v)k = n!

i! j!k!
uiv j(1 − u − v)k

denotes the bivariate Bernstein polynomials. The Bézier triangle’s shape is determined by the
1/2 (n+2)(n+1) control points bi jk. For the cubic case (n = 3), themost relevant one in practice,
Fig. 6.3 shows the control net and visualizes the domain.

Properties like affine invariance, corner-point interpolation, and the convex hull property
also hold for Bézier triangles.The boundary curves are Bézier curves of degree n. While partial
derivatives can be computed, we are usually interested in the directional derivatives

Dd01b(u, v) = n ∑
i+ j+k=n−1

(bi , j+1,k − bi+1, j,k)Bn−1
i jk (u, v),

Dd12b(u, v) = n ∑
i+ j+k=n−1

(bi , j,k+1 − bi , j+1,k)Bn−1
i jk (u, v),

Dd20b(u, v) = n ∑
i+ j+k=n−1

(bi+1, j,k − bi , j,k+1)Bn−1
i jk (u, v)
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with respect to the (u, v) domain directions
d01 =⎧⎪⎪⎪⎪⎪⎩01⎫⎪⎪⎪⎪⎪⎭−⎧⎪⎪⎪⎪⎪⎩10⎫⎪⎪⎪⎪⎪⎭=⎧⎪⎪⎪⎪⎪⎩−1

1
⎫⎪⎪⎪⎪⎪⎭, d12 =⎧⎪⎪⎪⎪⎪⎩00⎫⎪⎪⎪⎪⎪⎭−⎧⎪⎪⎪⎪⎪⎩01⎫⎪⎪⎪⎪⎪⎭=⎧⎪⎪⎪⎪⎪⎩ 0−1⎫⎪⎪⎪⎪⎪⎭, d20 =⎧⎪⎪⎪⎪⎪⎩10⎫⎪⎪⎪⎪⎪⎭−⎧⎪⎪⎪⎪⎪⎩00⎫⎪⎪⎪⎪⎪⎭=⎧⎪⎪⎪⎪⎪⎩10⎫⎪⎪⎪⎪⎪⎭,

which are parallel to the three boundaries (w = 0, u = 0, v = 0). Note that each directional
derivative is itself a Bézier triangle of degree n − 1. The second-order directional derivatives,
like

D2
d01b(u, v) = n(n − 1) ∑

i+ j+k=n−2
(bi , j+2,k − 2bi+1, j+1,k + bi+2, j,k)Bn−2

i jk (u, v),
and the mixed directional derivatives, like

D1,1
d01 ,−d20b(u, v) = n(n − 1) ∑

i+ j+k=n−2
(bi , j+1,k+1 − bi+1, j+1,k − bi+1, j,k+1 + bi+2, j,k)Bn−2

i jk (u, v),
are also Bézier triangles (of degree n − 2).

Note that a degree-n Bézier triangle can be converted into a degenerate Bézier patch of
degree n × n, where one boundary curve is collapsed to a single point [222]. Conversely, a
general Bézier patch of degree n ×m can be described by two Bézier triangles of degree n +m
[223].

6.1.3 PN triangles

Bézier triangles can be used for scattered data interpolation [247]. Often, given three points Pi
along with associated normals Ni , one seeks a Bézier triangle that interpolates to this data
(at its corners). In the context of real-time rendering with its still prevalent coarse triangle
models, this can be adapted to replace each flat triangle by a Bézier triangle to get a smoother
surface appearance and, in particular, visually improved silhouettes. One such interpolation
scheme, called PN triangle (short for curved point-normal triangle) or alternatively N-patch,
was introduced by Vlachos et al. [387] in the course of equipping Direct3D 8 with support for
higher-order surfaces.

A PN triangle is a cubic Bézier triangle b(u, v), where all control points are derived from
the vertex positions and normals of a base triangle. In particular, no neighborhood information
is required in the construction. As a consequence of this locality (and also of the cubic degree),
two abutting PN triangles in general only meet with C0 continuity. Note that this requires the
two corresponding base triangles to share normals at their common vertices. Since the missing
tangent continuity results in normal-field discontinuities, shading artifacts appear. To avoid
these and obtain at least a C0-continuous normal field, the normal component is decoupled
from the geometric component and specified by a separate linear or quadratic Bézier triangle
n(u, v).

An example of a base triangle mesh and the resulting PN triangle surface is depicted in
Fig. 6.4. Notice the smooth appearance and the curved silhouettes.

Geometric component

Given a base triangle with vertex positions P1, P2, P3 and associated normals N1, N2, N3, the
cubic Bézier triangle b(u, v) describing the geometric component is constructed as follows.
The vertex control points are just the given points:

b300 = P1, b030 = P2, b003 = P3.
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(a) Base triangle mesh (b) PN triangles

Figure 6.4 Example model double torus. The PN triangles are constructed from the base
triangle mesh.

The tangent control points are obtained by projecting a linearly interpolated point between Pi
and P j onto the tangent plane at Pi :

b210 = ( 23P1 + 1
3P2) − ⟨( 23P1 + 1

3P2) − P1,N1⟩N1= 1
3(2P1 + P2 − ⟨P2 − P1,N1⟩N1), b120 = 1

3(2P2 + P1 − ⟨P1 − P2,N2⟩N2),
b021 = 1

3(2P2 + P3 − ⟨P3 − P2,N2⟩N2), b012 = 1
3(2P3 + P2 − ⟨P2 − P3,N3⟩N3),

b102 = 1
3(2P3 + P1 − ⟨P1 − P3,N3⟩N3), b201 = 1

3(2P1 + P3 − ⟨P3 − P1,N1⟩N1).
Note that consequently, all control points of a PN triangle’s boundary curve are only dependent
on the vertex positions and normals of the corresponding edge.This ensures that two PN trian-
gles constructed for two adjacent base triangles with identical vertices at their shared edge have
a common boundary curve and hence join C0-continuously. Finally, the center control point is
chosen to achieve quadratic precision (by degree-elevating a quadratic Bézier triangle):

b111 = 1
4(b210 + b120 + b021 + b012 + b102 + b201) − 1

6(b300 + b030 + b003). (6.1)

The effect of the normals on the PN triangle’s shape is demonstrated by an example in Fig. 6.5.
In case of a crease point, i.e. a vertex at which two abutting base triangles have different

normals, C0 continuity mandates to additionally provide the adjacent triangle’s normal Na
i for

the vertex as input. Picking P1 and edge P1P2 as example, we first determine a tangent line
direction

T01 = N1 ×Na
1.

The affected tangent control point is then obtained by projecting onto this tangent line instead
of the tangent plane at P1:

b210 = P1 + 1
3⟨P2 − P1,T01⟩T01.

Normal component

The normal field for shading is described by a Bézier triangle n(u, v). Apart from simple linear
interpolation of the base triangle’s normals, a quadratic interpolation scheme is proposed by
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(a) (b)

Figure 6.5 Two example PN triangles with identical base triangle vertex positions but differ-
ent vertex normals. The normal field is constructed according to Farin’s variant.

Vlachos et al. [387] to be able to capture inflections (like in Fig. 6.5 b). For this, the vertex
control points are directly given by the provided normals:

n200 = N1, n020 = N2, n002 = N3.

The remainingmid-edge control points are derived by reflecting the linearly interpolated normal
at the center of each edge across a plane which is normal to this edge:

n110 = h110∥h110∥ , h110 = (N1 +N2) − 2 ⟨N1 +N2,P2 − P1⟩∥P2 − P1∥2 (P2 − P1),
n011 = h011∥h011∥ , h011 = (N2 +N3) − 2 ⟨N2 +N3,P3 − P2⟩∥P3 − P2∥2 (P3 − P2),
n101 = h101∥h101∥ , h101 = (N3 +N1) − 2 ⟨N3 +N1,P1 − P3⟩∥P1 − P3∥2 (P1 − P3).

In earlier work, van Overveld and Wyvill [384] propose an almost identical approach, but
set ni jk = 1/2hi jk and use a factor of 3 instead of 2 in the expression for hi jk, resulting from their
adopted constraint of the average curvature being as small as possible. Farin [117] suggests the
following modifications to guarantee n(1/2, 1/2) = h110, etc.:

n110 = 3
2h110 − 1

4N1 − 1
4N2 = 5

4(N1 +N2) − 3 ⟨N1 +N2,P2 − P1⟩∥P2 − P1∥2 (P2 − P1),
n011 = 3

2h011 − 1
4N2 − 1

4N3 = 5
4(N2 +N3) − 3 ⟨N2 +N3,P3 − P2⟩∥P3 − P2∥2 (P3 − P2),

n101 = 3
2h101 − 1

4N3 − 1
4N1 = 5

4(N3 +N1) − 3 ⟨N3 +N1,P1 − P3⟩∥P1 − P3∥2 (P1 − P3).
However, we observe that with this choice we actually get n(1/2, 1/2) = 1/8N1 + 3/4h110 + 1/8N2.
To really achieve n(1/2, 1/2) = h110, we have to set n110 = 2h110 − 1/2N1 − 1/2N2.

The assumption of quadratic normal variation can yield shading results that are visually
less pleasing than those obtained by the simpler linear interpolation. Actually, for many of the
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models we worked with this was the case. We then just used the linear normal interpolant
and degree-elevated it to a quadratic Bézier triangle to not skew performance measurements.
Lee and Jen [211] investigate shading problems with quadratic normal interpolation in detail
and discuss improvements. Most notably, they decide heuristically whether to assume linear or
quadratic variation of the normals.

Extensions and variants

While one major design goal of PN triangles was simplicity to allow efficient hardware imple-
mentation, several extensions have been proposed to increase this primitive’s expressive power
and improve the visual smoothness of surfaces composed of PN triangles.

To exercise more control over the shape and especially of sharp features, scalar tagged PN
triangles [47] were devised. Each base triangle vertex is augmented by a normal discontinuity
vector Δ, which represents the change in average normal across a crease passing through the
vertex (Δ = 0 for smooth vertices). Furthermore, three per-vertex scalar tags (sharpness σ , ten-
sion θ and bias β) are introduced. These essentially adapt the well-known continuity, tension,
and bias control parameters from spline theory [116, 192] to the PN triangle case.

Visual smoothness of PN triangles is hampered by themissingG1 continuity across bound-
ary curves. Since achieving such a G1 continuity is in general not possible with cubic Bézier
triangles, a different surface primitive must be utilized to this end. Gruen [144] adopts Niel-
son’s side-vertex scheme [271] to get so-called smoothed N-patches. The boundary curves are
derived as before. Then, for each boundary curve, a triangular patch is constructed by casting
cubic curves from each point of the boundary curve (i.e. the side) to the opposing vertex (each
interpolating these endpoints and their normals). In the final step, these patches are blended
together, with the blend weights being functions of the barycentric coordinates. Because this
construction is purely local and doesn’t take adjacent triangles into account, the shape is some-
times unsatisfactory. To improve it, each patch is at first blended with the corresponding origi-
nal PN triangle, where the employed weights are based both on the vicinity to the patch center
and on the dot product of the face normals of the two base triangles sharing the related edge.

A related andmore involved, but also more solid approach are PNG1 triangles [133], which
require the three adjacent triangles as additional input.This information is utilized to construct
a surface for each edge which is G1-continuous across the boundary curve. Finally, these three
surfaces are blended together, yielding a cubic Bézier triangle where each non-vertex control
point is a function of (u, v).This triangular patch is at leastG1-continuous at the border andG2

in the interior. PNG1 triangles also support sharp features. Again, a separate quadratic normal
field is constructed, where the mid-edge control points are derived from the patch’s analytic
normals.

Whereas all these techniques aim at enhancing PN triangles, Phong tessellation [46] further
simplifies them by using a Bézier triangle of only quadratic degree for the geometric compo-
nent, as well as a linear normal field. The surface is defined by projecting a point on the flat
base triangle onto the three tangent planes at the vertices, and then linearly interpolating be-
tween the resulting points. The name Phong tessellation is motivated by the resemblance of
this evaluation procedure with Phong normal interpolation. In practice, the actual surface is
obtained by linearly blending between the flat base triangle and its Phong tessellation to reduce
the curvedness of the patch. However, even for the recommended value α = 3/4 of the related
shape parameter α, we routinely observe surfaces that subjectively are curved toomuch. Conse-
quently, because a Phong tessellation is only C0-continuous, they suffer from unnatural bumps
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(a) Base triangles (b) PN triangles (c) Phong tessellation

Figure 6.6 While PN triangles (b) yield a smooth appearance, Phong tessellation (c) intro-
duces some unnatural bumps and dents.

and dents (cf. Fig. 6.6). Not least due to this shape deficiency, the practical relevance seems
rather limited despite having a somewhat lower computational cost than the already rather
cheap PN triangles.

6.2 Spline surfaces

Usually, to describe a surface, we need multiple Bézier patches (or Bézier triangles). It is then
often desirable to treat a connected collection of them as a single entity, featuring a continuous
global parameterization that spans all member-patches. Considering the underlying curve case
again, we seek a piecewise-polynomial curve, a spline, where each segment is a Bézier curve.
By joining multiple degree-n Bézier curves together at their endpoints, and subjecting each
of these curve segments to an affine parameter transformation φi(t) = (t − ti)/(ti+1 − ti) in
order to get a continuous concatenation of parameter intervals [ti , ti+1] and hence a global
parameterization, we obtain a Bézier spline curve. Applying the tensor-product approach, this
directly generalizes to Bézier spline surfaces.

Such a composition of Bézier patches is well suited for rendering, since each sub-patch
(spanning one segment in u and one segment in v direction) can readily be treated indepen-
dently from all others. Moreover, each sub-patch is of the same degree and depends only on the
same fixed number of control points, enabling a simple and efficient uniform representation
and processing of all sub-patches. On the other hand, Bézier splines are less suited for model-
ing because constraints on the control points have to bemanually enforced to achieve a desired
degree of continuity.
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B-spline surfaces

For such applications, B-spline surfaces are a more appropriate representation.They generalize
Bézier surfaces to the piecewise-polynomial case. A B-spline curve of degree n

d(t) = N∑
i=0

di Nn,T
i (t), t ∈ [tn , tN+1]

is described by a knot vector T = {t0, t1, . . . , tN+1+n} (ti ≤ ti+1, i = 0, . . . ,N + n) and control
points d0, . . . , dN (also called de Boor points). The definition makes use of the B-spline basis
functions Nn,T

i , which depend on the curve’s knot vector T . Like the Bernstein polynomials
used for Bézier curves, they can be defined recursively:2

N0,T
i (t) = {1, if t ∈ [ti , ti+1)

0, otherwise

Nk,T
i (t) = t − ti

ti+k − ti
Nk−1,T

i (t) + ti+1+k − t
ti+1+k − ti+1

Nk−1,T
i+1 (t), 1 ≤ k ≤ n.

(6.2)

Because the basis functionsNn,T
i have local support (Nn,T

i (t) = 0 for t ∈ (−∞, ti)∪[ti+n+1,∞)),
for a concrete value of t ∈ [t j, t j+1), it suffices to consider the range i = j − n, . . . , j of control
points and basis functions when computing d(t).

Concerning modeling applications, B-spline curves are superior to simple Bézier spline
curves since continuity can be easily controlled via the knot vector. A B-spline curve d(t) is au-
tomatically Cn−1-continuous except at parameter values t corresponding to a knot ti which has
multiplicity μi greater than one (i.e. ti = ti+1 = ⋯ = ti+μi−1), where it is only Cn−μi -continuous.
Endpoint interpolation is achieved by setting the multiplicity of the first and of the last knot to
n + 1, each.

Again, the curve case can be generalized to surfaces by the tensor-product approach. A B-
spline surface of degreem×n is completely specified by two knot vectorsU = {u0, . . . , uM+1+m}
and V = {v0, . . . , vN+1+n}, one for each parameter direction, and a grid of control points di j,
0 ≤ i ≤ M, 0 ≤ j ≤ N . The surface is then defined by

d(u, v) = M∑
i=0

N∑
j=0

di j Nm,U
i (u)Nn,V

j (v).
Sometimes, the knot vectors U and V are non-uniform, that is, internal knots are spaced

non-uniformly (internal knots with multiplicity greater than one are a special case of this).
Moreover, B-spline surfaces can be generalized to piecewise-rational surfaces by equipping
each de Boor point di j with an additional weight wi j. Supporting both non-uniform knot vec-
tors and varyingweights results inNURBS (non-uniform rationalB-spline) surfaces [298, 316],
the primary surface primitive in many computer-aided design and modeling tools and appli-
cations.

Circumventing topological constraints of NURBS surfaces

Irrespective of their wide-spread use, NURBS surfaces suffer from several limitations which
can render modeling tedious. In particular, the rectangular domain and the regular quad grid

2If one denominator becomes 0, the corresponding basis function of degree k − 1 also evaluates to zero. In
such cases we assume 0/0 = 0.
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of control points, which are a direct consequence of the tensor-product approach, impose
topological constraints. For instance, to add more detail within a certain rectangular region
of control points, new control points can be introduced by inserting additional knots. How-
ever, adding a knot to the knot vector U results in introducing a whole column of new control
points, spanning the complete parameter range in v direction and not just the relevant sub-
range. Such a global refinement makes modeling harder because modifying a region of less
detail has to be done unintentionally at a finer level of control.

Moreover, while the rectangular domain is well suited for following parallel feature lines, it
mandates degenerating control net edges or faces tomerge feature lines or to split a feature line.
In practice, a complex surface is usually composed of multiple adjoining NURBS surfaces. On
the one hand, this occurs to keep the number of unwanted but topologically required control
points low and hence maintain a reasonable modeling control and effort. On the other hand,
such a composition is necessitated when modeling surfaces of higher genus (i.e. with handles).
However, it then once again is up to the modeler to enforce constraints that maintain a cer-
tain continuity. Furthermore, it happens that two abutting NURBS surfaces are specified with
different knot vectors for the parameter direction along the shared boundary curve.3 With-
out special handling, this may result in gaps during rendering, especially in tessellation-based
approaches.

T-splines [343, 346] address many of these limitations. They generalize tensor-product B-
spline surfaces, allowing T-junctions in the control grid, which evolves to a so-called T-mesh.
Abutting B-spline surfaces can be merged into a single T-spline. On the other hand, a T-spline
can be converted to a collection of B-spline surfaces.

Another option for circumventing topological constraints of NURBS surfaces is trimming.
Within the parameter space, trimming regions are defined via NURBS curves to restrict the
domain in a non-trivial way.Those parts of the surface to which these parameter regions would
map are trimmed, i.e. they are removed from the actual surface. Trimming enables to easily
insert holes into a NURBS surface and realize complex boundaries.

Unfortunately, trimming introduces new problems and challenges. Concerning rendering,
tessellating trimmed NURBS surfaces is a complex and expensive process. However, it is pos-
sible to avoid an explicit tessellation and mimic the parametric trimming process on the GPU
with trim textures [150]. They provide a discrete sampling of the un-trimmed domain, storing
for each sample whether it is defined or trimmed away. For each fragment, the trim texture
is consulted at the associated parametric coordinates. If it indicates trimming, the fragment
is discarded. However, the discrete sampling can cause visual problems at the boundary of a
trimmed surface region abutting on another surface, necessitating further processing. More-
over, the pixel kill precludes antialiasing at trimmed surface region boundaries.

If two intersecting NURBS surfaces are trimmed at their intersection curve, the trimming
curves in parameter space, which correspond to (high-degree) pre-images of this curve, usu-
ally suffer from inaccuracies that can lead to gaps. In such cases, a promising option is the
conversion to untrimmed T-splines [345], which introduces some perturbations, though.

Direct B-spline surface evaluation on GPU

For rendering, especially for parallel tessellation-based approaches, B-spline surfaces are usu-
ally converted to a collection of equivalent Bézier patches [39]. Recall that this has the advantage

3In general, due to the limited numerical accuracy of floating-point numbers, the two boundary curve repre-
sentations are not exactly equivalent, i.e. the surfaces don’t abut completely.
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that each patch has a compact description of rather small, uniform and bounded size. Com-
pared to B-spline surfaces, where the number of knots and hence control points is basically
unlimited, this representation is highly amenable to processing on graphics hardware. Never-
theless, some approaches were devised for direct evaluation of B-spline surfaces on the GPU
without prior conversion to Bézier patches.

Kanai [176] stores knots and control points in textures, allocating one (potentially only par-
tially occupied) row per NURBS surface. In a shader invoked with domain coordinates (u, v)
as input, the relevant knot intervals [uj, uj+1) ∋ u and [vk , vk+1) ∋ v are first determined with
a binary search. Then, the (non-vanishing) basis functions and their derivatives are computed
recursively. To evaluate the surface position at (u, v), the basis functions are linearly combined
with the control points. Finally, the surface normal gets derived from the derivatives, which
are computed analogously. Note that to efficiently realize the recursive basis function evalua-
tion and to keep the required temporary space to a minimum, a specialized shader version is
employed for each combination of degrees m × n.

An alternative approach is pursued by Krishnamurthy et al. [194], who target the NURBS
surface evaluation at sample points on a regular (u, v) grid. Initially, they determine the rele-
vant subsequences of the knot vectors for each sample point on the CPU and store them in a
texture. Using the recurrence relations from (6.2), the basis functions are calculated iteratively
in multiple passes via render-target ping-pong, first in u and then in v direction. The values
for the zero-degree basis functions N0

i are provided in a texture prepared on the CPU. In two
final rendering passes, the basis functions are first multiplied with their corresponding control
points, and then these results are summed up.

The technique was later extended to additionally compute exact derivatives [195]. Analo-
gous to evaluating the surface positions, the derivatives of the basis functions are determined
and then utilized together with the basis functions and the control points to compute the sur-
face derivatives and finally the surface normal. While this approach is generic regarding the
supported NURBS surfaces, it is not very appealing because it is slow, performs evaluation
of vanishing intermediate basis functions, requires many rendering passes, and unnecessarily
off-loads work onto the CPU. Moreover, it is only applicable to regular sampling grids.

6.3 Subdivision surfaces

B-spline surfaces can be refined by subdivision, e.g. performed with the Lane-Riesenfeld algo-
rithm [205, 323]. This inserts a new knot in the middle of each knot interval, introduces new
control points and adapts the position of old control points. The resulting new grid of con-
trol points approximates the B-spline surface closer than the old one. In the limit, successive
subdivision yields a control grid that equals the B-spline surface.

As discussed in the previous section, B-spline surfaces suffer from topological restrictions.
However, using the subdivision paradigm, they can be generalized to arbitrary topology. A
subdivision surface is defined by a polygonal base meshM 0 and a set of subdivision rules. A
one-time application of these rules to the mesh constitutes a subdivision step. This performs
a topological refinement of the meshMi and a subsequent smoothing, yielding a new mesh
Mi+1. Executing further subdivision steps continuously results in a sequence of meshes that
converges to a surface M∞. This so-called limit surface is in general smooth. In particular,
note that smoothness doesn’t require any constraints on the relative position of vertices in the
input meshM 0.
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(a) Base mesh (b) Subdivision level 1 (c) Subdivision level 2 (d) Limit surface

Figure 6.7 Example of Catmull-Clark subdivision.

A certain set of subdivision rules defines a subdivision scheme. Depending on the con-
crete scheme, the supported facet types of the base meshM 0 may be restricted. One of the first
and probably the most well-known and most widely used scheme is Catmull-Clark subdivi-
sion [64]. It generalizes uniform bicubic B-spline surfaces to arbitrary topology and is hence a
quadrilateral scheme but supports arbitrary polygonal facets in the base mesh. Catmull-Clark
subdivision is widely supported by modeling applications such as Blender and Maya as well
as by renderers like PRMan and mental ray. An example surface is shown in Fig. 6.7. The
subdivision rules for the interior of the surface are illustrated and described in Fig. 6.8.

Depending on the valence k of a vertex, i.e. the number of incident edges, we distinguish
between regular or ordinary vertices (k = 4 in case of quad meshes) and irregular or extraor-
dinary vertices (k ≠ 4). The limit surface is C2-continuous everywhere except at extraordinary
vertices, where it is only C1-continuous. Since a subdivision step yields solely quad faces, only
ordinary vertices are created during subdivision and hence the number of extraordinary ver-
tices remains constant.

There also exist triangular subdivision schemes where each meshMi is only composed of
triangular facets. The first and most prominent one is Loop’s scheme [231], which generalizes
three-directional quartic box splines and is C2-continuous everywhere except at extraordinary
vertices (valence k ≠ 6), where it is C1-continuous. Moreover, subdivision schemes were de-
vised that combine quadrilateral and triangular schemes and operate directly on mixed trian-
gle/quad meshes [294, 324, 365]. For polar configurations, i.e. closed triangle fans with center
vertices of high valence and outer vertices of valence 4, often encountered whenmodeling sur-
faces of revolution or capping features like fingertips, distinct subdivision schemes exist [178]
that can also be combined with standard schemes like Catmull-Clark [261].

All mentioned subdivision schemes are approximating because the base mesh vertices are
in general not interpolated by the limit surface. By contrast, interpolating schemes never move
existing vertices when performing a subdivision step but only introduce additional vertices.
Such schemes, like modified butterfly subdivision [421], which is C1-continuous everywhere,
usually produce surfaces of lower quality and converge slower to the limit surface than approx-
imating ones.

So-called primal schemes are characterized by splitting facets at each subdivision step;
they replace a face by new faces which correspond topologically to this face. Besides them,
dual schemes, which split vertices, like Doo-Sabin [96, 97], and schemes based on Laves or
Archimedean tilings of the plane, like

√
3-subdivision [190, 191], exist. More details on these

as well as on themathematical analysis of subdivision schemes can be found in books [293, 395]
and SIGGRAPH course notes [419, 420] about subdivision.
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Figure 6.8 One step of Catmull-Clark subdivision. Consider a vertex v j
i of valence k. For

each incident face, a new face point f j+1i ,ℓ is added at the face’s centroid. Subsequently, for each
edge, a new edge point e j+1i ,ℓ = 1

4(v j
i + v j

i ,2ℓ + f j+1i ,ℓ + f j+1i ,ℓ−1 mod k) is computed as the average of the
edge’s endpoints and the two adjacent faces’ newly created face points. Each old vertex is finally
displaced to v j+1

i = k−2
k v j

i + 1
k2 ∑k−1

ℓ=0 v
j
i ,2ℓ + 1

k2 ∑k−1
ℓ=0 f

j+1
i ,ℓ , i.e. to a weighted average of its current

position, the average of its adjacent vertices and the average of the newly added face points.
The new points f j+1i ,ℓ , e

j+1
i ,ℓ and v j+1

i can also be computed directly from the old points v j using
the weights from the indicated stencils/subdivision masks (β = 3

2k , γ = 1
4k ). Note that different

rules apply for boundaries.

Piecewise-smooth subdivision

While subdivision surfaces are smooth, they may be augmented by sharp features, like creases,
to produce piecewise-smooth surfaces. To this end, each edge in the basemesh can be tagged as
sharp. Depending on the number s of sharp incident edges, a vertex can be classified as either
smooth (s = 0), dart (s = 1), crease (s = 2) or corner vertex (s ≥ 3). For each non-smooth
configuration, modified subdivision masks were derived for both Loop’s scheme [166] and for
Catmull-Clark subdivision [92]. Biermann et al. [33] provide improved rules for both schemes
and also allow the prescription of normals at base mesh vertices.

Semi-sharp or soft creases may be incorporated by hybrid subdivision, where sharp rules
are only applied during a number of initial subdivision steps and then the standard smooth
rules are utilized [92].
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6.3.1 Direct evaluation

Since subdivision surfaces are defined by repeated subdivision, the most natural method to
render them is to perform a sufficiently high number n of subdivision steps, and to utilize the
resulting polygonal approximation for rendering. It is possible to directly push the vertices of
Mn onto the limit surface by applying limit masks to the mesh [152]. Analogously, rules exist
to derive the corresponding limit tangents directly fromMn. Several efficient implementations
pursuing such an approach have been devised [56, 300, 357]; however, the recursive refinement
has multiple drawbacks, like high storage andmemory bandwidth requirements because of the
explicitly constructed intermediate meshes Mj ( j < n), a limited ability to locally adapt the
number of performed subdivision steps, and requiring sampled surface points to correspond
to vertices ofMn (see also Sec. 7.2).

Alleviating the necessity to construct intermediate meshesMj, Kazakov [180] suggests di-
rectly evaluating the surface obtained after a fixed number n of subdivision steps. Considering
the case of Catmull-Clark subdivision and n = 2 steps, he presents a formulation where the new
position v2i of a vertex fromM 0 is expressed in terms of the vertex valence, the old position v0i ,
the average position of the neighboring vertices sharing an edgewith the vertex, and the average
position of the remaining face-sharing neighboring vertices. The other vertices ofM 2, which
are newly introduced with respect toM 0, are derived from a fixed, valence-independent num-
ber of neighborhood vertices, the original vertices v0i , and their updated positions v1i , which are
computed analogously to v2i . While this evaluation technique was devised for implementation
in a geometry shader, it requires support for input primitive topologies with a variable num-
ber of vertices, usually more than six (corresponding to triangle with adjacency). Such a direct
realization is hence not supported by current PC graphics hardware, butwith someminormod-
ifications should be implementable within the pipeline of Direct3D 11 (discussed in Sec. 7.5.5).
Nevertheless, because of the approach’s restriction to a fixed and rather low subdivision depth
and of enabling only parallelism across faces of the base mesh, the practical relevance of the
technique appears quite limited.

Bolz and Schröder [42, 43] observe that subdivision is a linear process, where each ver-
tex of the mesh Mn projected to the limit surface M∞ is a linear combination of the base
mesh vertices v0i . The combination coefficients constitute basis functions Bi which have com-
pact support and don’t depend on the actual vertices v0i but only on the local mesh connectivity
and edge tags.These basis functions can be precomputed at sample points corresponding to the
mesh vertices after n subdivision steps. During runtime, for each face of the basemeshM 0, the
relevant vertices v0i in the neighborhood along with the corresponding basis functions Bi are
determined.Then, for each sample within the face corresponding to anMn-vertex, the related
basis function values are looked up, weighted by the vertices and summed. Because storage
cost for basis functions is high, especially for higher subdivision levels n, an initial subdivi-
sion step is performed to isolate extraordinary vertices, i.e. the algorithm actually operates on
M 1. Consequently, no face has more than one extraordinary vertex and the basis functions be-
come a function of just valence and edge tags. By exploiting symmetries, the number of distinct
basis functions and hence storage requirements can be further reduced. Despite the support
for piecewise-smooth subdivision surfaces and good parallelizability, the reliance on sample-
specific precomputed data renders this approach somewhat unattractive for implementation
on current graphics hardware designed for high arithmetic intensity.

Note that both discussed methods essentially do the same: linearly combining base mesh
vertices. The first indirectly derives the influence of each base mesh vertex on the fly with ex-
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plicit formulae structured for efficient evaluation, whereas the latter determines these weights
directly in a preprocess and stores them as basis functions. While both methods thus success-
fully avoid explicitly executing individual subdivision steps, they can only evaluate the surface
at sample points corresponding to the vertices of a meshMn after n steps. Schaefer and War-
ren [325, 326] lift this limitation, introducing a technique to directly evaluate the limit surface
on a uniform grid of arbitrary integer size within each face ofM 0. Analogous to the tabulated-
basis-function approach, they precompute exact evaluation masks for all sample grid points
and all supported neighborhood configurations.

For subdivision schemes which generalize piecewise-polynomial surfaces, like Catmull-
Clark and Loop, Stam [364] devised a method to directly evaluate the limit surface at arbitrary
sample positions. Since Catmull-Clark subdivision is based on bicubic B-spline surfaces, each
regular quad face of a meshMi , having only ordinary vertices, converges to a bicubic Bézier
patch.The patch control points can be readily derived from the vertices of the face and its one-
ring neighborhood. Consequently, within regular faces, the subdivision surface can easily be
evaluated at any sample position. On the other hand, one subdivision step splits an irregular
quad face with one extraordinary vertex into three regular faces and one irregular one. There-
fore, any sample position within an irregular face will eventually be located within a regular
face after a certain number n of subdivision steps,4 enabling a direct evaluation again.5 Since
a single subdivision step can be expressed with a subdivision matrix A, n-times subdivision
corresponds to a matrix An derived by repeated multiplication of A. By utilizing the eigen-
structure of A, this matrix power can be computed in constant time. As a direct consequence,
the control points of a Bézier patch corresponding to that regular face ofMn which contains a
certain sample point can be derived from the base meshM 0 in constant time and without hav-
ing to execute any subdivision steps. In practice, for each valence k, the eigenstructure of the
subdivision matrix Ak is precomputed. During runtime, the base mesh vertices are first pro-
jected into the eigenspace ofAk. Then, for each sample point, the required subdivision depth n
is determined, and a linear combination of the eigenvalues raised to n and the projected base
mesh vertices is computed.

Stam only discussed the method for subdivision surfaces without boundaries, for both
Catmull-Clark [364] and Loop subdivision [363]. The technique was later extended to piece-
wise-smooth subdivision surfaces with boundaries and demonstrated on Loop’s scheme [418].
Moreover, for (smooth) Catmull-Clark subdivision surfaces with boundaries another exten-
sion exists [201].

6.3.2 Approximation using Bézier surfaces

Although the direct-evaluation methods just presented in the previous subsection, especially
the latter ones, are efficient and in principle well suited for GPU-based parallel execution, they
are more complex, more expensive and slower than direct-evaluation approaches for Bézier
surfaces. For rendering purposes, it hence appears desirable to approximate subdivision sur-
faces by Bézier surfaces.

4The only exception are sample positions which correspond exactly to an extraordinary vertex. However, the
limit position of a base mesh vertex can be evaluated utilizing limit masks, anyway. Alternatively, such a critical
sample may be moved slightly away from the vertex.

5This also gives rise to the following rendering approach [34, 92]: render regular parts and subdivide irregular
faces unless they are small enough to just render the face as polygon; process the newly generated faces recursively.
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Since the Catmull-Clark scheme is based on B-spline surfaces and is also of high practical
relevance, it is a natural candidate for such an approximation. The PCCM (patching Catmull-
Clark meshes) approach [292] constructs a bicubic NURBS patch for each quad face of the
coarsest quad-only meshMj.The surface described by the composition of the NURBS patches
is C2-continuous everywhere except near extraordinary vertices, where it is at least C1-contin-
uous.These are also the only regions where it differs from the subdivision surfaceM∞. PCCM
requires a sufficient separation of the extraordinary vertices, necessitating one or even two
initial subdivision steps.

A different approach targeted specifically towardsGPU implementation is pursued by Loop
and Schaefer [230] with their ACC (approximating Catmull-Clark) technique. They give up
C1 continuity across Bézier patches and, similar to the PN triangle technique, separate the
geometric from the normal component. This decoupling often results in smaller geometric
and normal approximation errors compared to PCCM. ACC constructs a bicubic Bézier patch,
called geometry patch, for each quad face of Mj. In case of regular faces, a geometry patch
matches the subdivision surface exactly. To achieve visual smoothness even near extraordinary
vertices, two tangent patches of degree 2× 3 each are additionally derived. Their cross product
gives a shading normal field which is continuous everywhere. Unlike PCCM, ACC doesn’t
require any initial subdivision steps to isolate extraordinary vertices; only if the base mesh
contains any non-quad facets, a single subdivision is needed. BecauseACCoperates only locally
on a face’s one-ring neighborhood, the conversion to geometry and tangent patches can be well
parallelized and executed on the GPU. Recently, Kovacs et al. [193] extended the ACC scheme
to further support piecewise-smooth subdivision surfaces with creases and corners.

By utilizing another primitive in addition to (bicubic) Bézier patches, Ni et al. [269] gener-
ate a G1-continuous approximation of Catmull-Clark subdivision surfaces. As usual, for regu-
lar quad faces a bicubic Bézier patch is constructed. However, an irregular quad face with up
to four extraordinary vertices gets converted to a composite patch. Such a c-patch has cubic
boundaries and is equivalent to a closed fan of four quartic Bézier triangles. It is defined by
only 24 control points because for each of the four sub-triangles only the three interior control
points as well as the four control points (of which two are shared by two triangles) defining
the cubic boundary curve are actually required. The exterior control points can be derived by
degree-elevating the boundary curve or by averaging control points from two adjacent trian-
gles, respectively. In general, the component triangles of a c-patch meet only with C1 continu-
ity, and two c-patches join with G1 continuity. Note that the approach was explicitly designed
for efficient GPU implementation. In particular, the computation of the control points for the
Bézier patches and c-patches can be structured into two phases which directly map to the ver-
tex and geometry shader stages. Moreover, the resulting piecewise-polynomial approximation
has a compact representation, requiring even fewer control points than ACC.

The technique was later extended to also directly support triangular and pentagonal faces
as well as polar configurations [262]. Like non-regular quads, triangles and pentagons are con-
verted to a Pm-patch. Generalizing the c-patch, a Pm-patch hasm cubic boundary curves and is
composed ofm quartic triangular Bézier patches that form a closed triangle fan. It is described
by 6m+1 control points analogous to the c-patch, with the difference that it explicitly stores the
corner control point common to all component triangles, necessitated by the support for facets
with m ≠ 4 sides. If a triangular face appears in polar configuration, it is not converted to a P3-
patch but to a degenerate bicubic Bézier patch where one boundary curve is contracted to the
single pole point. The approximation scheme also supports (semi-)sharp features, augmenting
each vertex of the base mesh by a sharpness parameter α for each incident edge.



CHAPTER 6 Fundamentals of curved surfaces 99

(a) Torus (b) Goursat’s surface (c) Heart (d) Barth decic

Figure 6.9 Examples of algebraic surfaces. (a) Torus (degree 4): (x2 + y2 + z2 + R2 − r2)2 −
4R2 (x2+ y2) = 0, R = 2, r = 1. (b) Goursat’s surface (degree 4): x4+ y4+ z4+ a (x2+ y2+ z2)2+
b (x2+ y2+ z2)+ c = 0, a = 0, b = −2, c = −1. (c) Heart (degree 6): (x2+ 9/4 y2+ z2−1)3− x2z3−
9/80 y2z3 = 0. (d) Barth decic [27] (degree 10): 8 (x2 − τ4y2) (y2 − τ4z2) (z2 − τ4x2) (x4 + y4 +
z4 − 2x2y2 − 2x2z2 − 2y2z2) + (3 + 5τ) (x2 + y2 + z2 −w2)2 (x2 + y2 + z2 − (2 − τ)w2)2w2 = 0,
w = 1, τ = 1/2 (1 +√

5).
For triangular subdivision schemes like Loop, a simpler and computationally cheaper ap-

proach is QAS (quadratic approximation of subdivision surfaces) [50]. Building on the PN
triangle technique, each face of the base mesh is approximated by two quadratic Bézier trian-
gles, one for the geometric component and one for the shading normal field. Initially, a single
subdivision step is performed, the resultingmesh vertices are projected to the limit surface, and
the corresponding limit normals are determined. Taking only the four sub-triangles created for
each base mesh face as input, the control points for the two Bézier triangles are computed such
that all sub-triangle vertices are interpolated by a corner or a boundary curve, respectively.
Note that this straightforward local fitting only guarantees C0 continuity. Furthermore, not
least because of using only a quadratic surface, the approximation in general doesn’t match the
subdivision surface except at vertices ofM 1.

6.4 Algebraic surfaces

Apart from defining surfaces via parametric or recursive formulations, they may also be de-
scribed implicitly by the zero set of some scalar function f (x) of points x = (x , y, z)T in model
space. More formally, such an implicit surface [37, 386]

S = {p ∈ U ⊆ R3 ∣ f (p) = 0}
is specified by a domain U ⊆ R3 and a function f ∶ U → R. Its normal is given by the gradient:

nS(x) = ∇ f (x) = ⎧⎪⎩ d
dx f (x), d

dy f (x), d
dz f (x)⎫⎪⎭T.

If f is a polynomial function, the surface S is an algebraic variety of dimension two and is called
an algebraic surface.

Some examples demonstrating the expressive power of algebraic surfaces are shown in
Fig. 6.9. It is also possible to exactly describe (rational) Bézier surfaces as algebraic surfaces,
but the degree of f becomes high quickly. In general, a tensor-product patch of degree m × n
has an implicit representation of degree 2mn, and a triangular patch of degree n results in
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an algebraic surface of degree n2 [244, 341]. Note that the actual algebraic degree is lower in
presence of base points, i.e. (possibly complex and infinite) parameter values (u, v) where the
homogeneous version of the Bézier surface vanishes, i.e. b(u, v) = (0, 0, 0, 0)T. As an example,
from the 32 bicubic patches defining Newell’s teapot [81], only 8 have degree-18 implicit equa-
tions; the remaining ones have implicit representations of degree 9 (16 patches), 13 (4 patches)
and 15 (4 patches), respectively [344].

Unfortunately, the high degree and especially the non-intuitive relationship of f ’s polyno-
mial coefficients to the shape of the surface make general algebraic surfaces inappropriate as
a primitive for modeling curved surfaces. These shortcomings are addressed by piecewise al-
gebraic surfaces [340], compositions of algebraic surface patches. Such a patch of degree n is
defined by a tetrahedron with vertices P1, P2, P3, P4, and a scalar function of the tetrahedron’s
barycentric coordinates (u, v ,w , 1 − u − v −w) given by an n-degree Bézier tetrahedron

b(u, v ,w) = ∑
i+ j+k+l=n

bi jkl Bn
i jkl(u, v ,w),

where

Bn
i jkl(u, v ,w) = ( n

i , j, k, l
)uiv jwk(1 − u − v −w)l = n!

i! j!k!l !
uiv jwk(1 − u − v −w)l

are the trivariate Bernstein polynomials. The isosurface b(u, v ,w) = 0 confined to the tetrahe-
dron (i.e. u, v ,w ≥ 0 and u + v + w ≤ 1) describes the patch’s surface. Its shape is controlled
in a meaningful way by the 1/6 (n + 3)(n + 2)(n + 1) control weights bi jkl , where each weight
influences the function b(u, v ,w)most directly near its corresponding control point

pi jkl = i
n
P1 + j

n
P2 + k

n
P3 + l

n
P4.

Note that the formulation in terms of a Bézier simplex has the nice property that many
Bézier techniques for parametric curves and surfaces can easily be adapted. In particular, mul-
tiple algebraic surface patchesmay be joined together with a desired cross-boundary continuity
by imposing constraints on the control weights. To simplify such constructions, techniques like
macro patches [342] have been developed.

6.4.1 GPU-based raycasting

All previously discussed curved surface primitives can essentially be represented or at least
closely approximated by Bézier surfaces. Algebraic surfaces, however, in general defy a direct
conversion. Although it is possible to derive a piecewise-polynomial approximation, for in-
stance a piecewise-linear onewith themarching cubes algorithm [232], it is usually of low qual-
ity, or consists of a huge number of patches, or requires a sophisticated and time-consuming
process.

Not least due to such issues, raycasting [155] is the most common and probably the most
natural approach for directly rendering algebraic surfaces, albeit a variety of other methods ex-
ist [188]. In contrast to parametrically defined surfaces, the ray–surface intersection equation
to solve is univariate (ray parameter) and not multivariate (parametric coordinates), facilitat-
ing an efficient implementation. Because of this special status of algebraic surfaces, we briefly
review GPU-based raycasting techniques achieving real-time frame rates. Note that Sec. 6.5.2
discusses raycasting for the other, non-implicit surface primitives.
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For piecewise algebraic surface patches of degree n ≤ 4, Loop and Blinn [229] render the
projected triangular faces of a patch’s defining tetrahedron. In the pixel shader, the ray–surface
intersection is computed using an analytic root finding method, discarding the fragment if no
intersection is found. However, sometimes an existing real root is missed and hence a pixel-
sized gap introduced, which leads to visual artifacts. To alleviate these, a numerically more
robust root finding algorithm was devised later [36].

Stoll et al. [367] present an optimized method for raycasting of quadratic algebraic surfaces
whose spatial domain is bounded by a sphere or a tetrahedron. Arbitrary implicit surfaces are
targeted by Knoll et al. [189], who employ interval and affine arithmetic to ensure numerical
robustness.

By rendering proxy geometry for the domain of the algebraic surface and performing the
actual raycasting in a pixel shader, all these approaches fit into the standard graphics pipeline. In
contrast, Reimers and Seland [312] use a CUDA-basedmethod and raycast the complete frame,
depicting a single arbitrary algebraic surface of potentially high degree like those in Fig. 6.9.
At first, the polynomial f is put into so-called frustum form by compositing it with a trilinear
mapping from the unit cube to the view frustum. This allows efficiently deriving a univariate
representation дxy(t) in Bézier form for the intersection equation of each ray (corresponding
to pixel (x , y)). Its closest root is then computed by repeated refinement of the control polygon
of дxy using B-spline knot insertion.

6.5 Rendering approaches

After having given an overview of the most relevant primitives for curved surfaces in the pre-
ceding sections, we discuss the threemajor rendering approaches—tessellation, raycasting, and
direct rasterization—in more detail. Recall that except algebraic surfaces basically all consid-
ered surface descriptions can be represented as Bézier surfaces or well approximated by them.
Bézier surfaces have a compact, uniform representation of small and bounded size, unlike e.g.
general B-spline surfaces. Their evaluation is also straightforward and doesn’t involve deter-
mining relevant sub-parts of the description like a hit knot interval. On the other hand, to
describe a complex surface, a whole collection of Bézier surfaces is required. However, for ren-
dering purposes, this is actually an advantage because such a decomposition into independent
patches naturally provides a reasonably fine granularity for both locally adapting rendering
efforts and efficient parallel execution. For all these reasons, Bézier surfaces are the primary
primitive for rendering curved surfaces. We thus mainly focus on them during the following
discussion.

6.5.1 Tessellation

The dominating and historically probably first approach for rendering curved surfaces is tes-
sellation. At first, an approximation by a polygonal mesh is derived for the surface. Usually, the
mesh vertices are chosen to interpolate the surface and are hence determined by sampling the
surface. If the mesh is composed of non-triangular faces, these are subsequently triangulated.
The resulting triangular mesh provides a piecewise-linear approximation, both of the geome-
try and of the normal field. Finally, the mesh is rendered directly. Note that in practice mesh
generation and rendering may be interleaved, i.e. once a part of the surface got tessellated, it
may be rendered immediately.
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Because current standard graphics hardware is optimized for rasterizing triangles, tessel-
lation-based approaches are well suited for real-time rendering. To allow arbitrary changes
of viewpoint and scene content, an appropriate approximating triangle mesh must be derived
anew each frame, possibly incrementally modifying an existing one to exploit temporal coher-
ence. In general, different parts of the surface, for instance different patches, can be treated
independently from each other and hence be processed in parallel.The tessellation rate, i.e. the
number of triangles created for a certain part of the surface, can vary locally and should ideally
be chosen as small as possible to still achieve visual smoothness, especially at silhouettes. Such
an adaptive tessellation keeps memory requirements low and enables a good utilization of the
GPU. On the other hand, care must be taken that no cracks in a surface’s approximation are
introduced if two adjacent parts are tessellated to different levels. Issues like these and possible
solutions are covered in the next chapter, which is dedicated to adaptive tessellation.

General methods

One way to approach tessellation is repeated subdivision. Each patch can trivially be approxi-
mated by a polygon constructed from the patch’s corner control points. If the resulting approxi-
mation error is too large, the patch is subdivided into two or more sub-patches.This procedure
is applied recursively to the newly generated sub-patches. In early work, Catmull [65] performs
subdivision for bicubic polynomial patches until the resulting quads become smaller than one
pixel. Such a generation of sub-pixel-sized micropolygons is also central to the Reyes render-
ing technique [78], where each geometric primitive is successively split or subdivided until it
can be diced, i.e. converted to a regular grid of micropolygons of roughly equal size in screen
space. Note that one major motivation for (sub-)pixel-level subdivision was the applicability of
flat shading without sacrificing visual quality. In the majority of cases, however, it is reasonable
to stop subdivision once an acceptable geometric approximation error is reached [75, 129]. As
further pointed out in Sec. 7.2, recursive approaches are challenging to realize efficiently on
current-generation GPUs. This is also one main reason for recent research efforts of convert-
ing subdivision surfaces, for which repeated subdivision is the most natural way of obtaining
an approximation for rendering, to Bézier surfaces.

Another approach which avoids recursion is to first determine the tessellation rate for each
patch, and then generate a uniform tessellation by regularly sampling the surface. While this
allows only for adaptivity on an inter-patch level but not within a patch, it offers a finer-grained
control of the sample spacing compared to regular repeated subdivision. To avoid cracks, per
boundary curve the tessellation factor, i.e. the number of line segments used for approximating
the curve, may be chosen separately. As an example, Rockwood et al. [315] present a modular
technique for rendering trimmed tensor-product surfaces. After conversion to Bézier patches,
for each patch, sampling step sizes in u and v parameter direction are derived that guaran-
tee that the screen-space approximation error of the resulting triangle mesh satisfies a user-
specified tolerance. Skipping the trimming-related steps, the interior of each patch is then uni-
formly tessellated according to the step sizes. Boundary curves are sampled separately to avoid
inter-patch cracks and are connected to the interior with triangles. Algorithms in this spirit are
currently themost promising ones for real-time rendering, since they can efficiently bemapped
to graphics hardware.
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Realizations

Surface tessellation is a long-standing task. Historically, most approaches are CPU-based, al-
though sometimes efforts are made to realize some parts on programmable graphics hardware.
Algorithms have been proposed for surface primitives like, for instance, (trimmed) NURBS
surfaces [3, 199, 296, 315], Bézier triangles [55, 200] or subdivision surfaces [42, 259, 300, 325,
351]. Many CPU-guided approaches are not that well suited to be directly and fully imple-
mented on the GPU because they are recursive or sequential in nature or require global knowl-
edge. Moreover, they sometimes rely on surface-specific precomputations that limit general
applicability, e.g. preventing modifications of the control points. A nice example that deprives
a direct and efficient GPU realization and lacks flexibility but also highlights the range of pos-
sible approaches is the view-dependent adaptive tessellation algorithm of Chhugani and Ku-
mar [69]. They incrementally precompute a good object-space sampling of each Bézier patch.
These domain sample points are sorted according to their influence on reducing the geometric
deviation and stored in a list. At runtime, a Delaunay triangulation of the required subset of
samples is kept. To adapt to changing views, samples are added or removed incrementally. In
case further samples beyond the precomputed ones are required, new samples are generated
on the fly by uniform sampling.

With graphics hardware becoming ever more powerful regarding programmability, com-
putational units, as well as memory bandwidth and space, GPU-based tessellation approaches
[43, 48, 150, 337] are actively researched and now routinely outperform CPU-based ones if
crafted well. Such techniques are discussed in more detail in the next chapter. In particular,
we present our technical contributions, like a unified, completely GPU-based framework for
high-performance tessellation of curved surfaces.

On the other hand, dedicated hardware solutions were proposed and sometimes even re-
alized for several primitives, including tensor-product Bézier patches [110], PN triangles [71],
and subdivision surfaces [9, 34]. Older-generation main-stream graphics hardware also fea-
tured some native support for selected primitives. NVIDIA’s GeForce 3 [254] assisted the tes-
sellation of Bézier patches, while ATI incorporated TruForm [18] into its products for deriving
and tessellating PN triangles.

Such specialized approaches never caught on. Recent concepts aim at augmenting the pipe-
line by a dedicated tessellation unit which takes a primitive type (line, triangle, quad) and tes-
sellation factors as input and outputs a corresponding generic tessellation of the related unit
primitive in parameter space. Together with programmable shaders, this provides a flexible ge-
ometric synthesis stage on the graphics hardware. While the latest AMD GPUs like the Xbox
360’s Xenos or the members of the Radeon R600 and R700 series [374] already feature such
a unit, Direct3D 11 requires future hardware to provide a more versatile tessellation support,
introducing two additional programmable pipeline stages (see Sec. 7.5.5).

6.5.2 Raycasting

Tessellation-based approaches seek to derive a piecewise-linear approximation of a surface that
is good enough to be visually equivalent to the actual surface. By contrast, raycasting tries to
determine an accurate (sub)pixel-wise sampling of the surface. For each (sample point of a)
pixel, a ray is cast from the camera through the pixel into the scene. A ray–surface intersection
test determines whether and at which position a curved surface is hit. Making this intersection
calculation fast and robust is one main challenge, especially for real-time rendering.
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Targeting bicubic polynomial patches, Kajiya [174] uses techniques from algebraic geom-
etry, employing Laguerre’s method for solving the arising univariate polynomial equations. In
contrast, Toth [379] advocatesmultivariate Newton iteration and utilizes interval analysis tech-
niques to determine safe starting regions in parameter space where Newton iteration will con-
verge to a unique solution. Similarly, Sweeney and Bartels [370] also use Newton iteration but
obtain good starting points for the iteration from a precomputed hierarchy of bounding boxes
encompassing single vertices of the sub-patches resulting from an initial subdivision of the
surface. Improving on this, Barth and Stürzlinger [28] adaptively subdivide the surface until
all sub-patches can be well approximated by a planar parallelogram, and build a hierarchy of
parallelepipeds tightly bounding the surface. Later, this approach was adapted to raycasting
(trimmed) Bézier triangles [368].

An alternative technique is Bézier clipping [272], where regions of the parameter domain
known to have no intersections are successively clipped away. Unlike Newton iteration and
related root finding algorithms, Bézier clipping doesn’t require a good initial guess of the in-
tersection point for convergence. On the other hand, it suffers from wrongly reporting in-
tersections [60], and may also report equivalent intersections multiple times, especially near
degenerate boundaries [104, 105]. Improvements addressing these shortcomings were sug-
gested [60, 104, 105].Moreover, Bézier clipping, originally devised for tensor-product surfaces,
was adapted for triangular Bézier patches [319, 320].

GPU-based realization

For raycasting (trimmed) Bézier patches, several fast CPU-based approaches exist [1, 32, 135]
as part of interactive software raytracing systems. Since graphics hardware offers more com-
putational power and higher memory bandwidth than CPUs, realizing raytracing systems on
GPUs seems promising. But because the wide parallelism and the limited flexibility of current
graphics hardware impose some challenging restrictions, current implementations [149, 167,
299] for raycasting scenes composed of triangles are not able to distinctly outperform their
CPU-based competitors.

At least in the short run, however, most real-time rendering applications don’t aim at com-
pletely substituting the standard rasterization-based graphics pipeline by a raytracing system.
Instead, they seek to augment the current pipeline with curved surfaces possibly rendered via
raycasting. As already mentioned in the context of algebraic surfaces in Sec. 6.4.1, the general
integration approach is to render proxy geometry bounding the surface, thus generating frag-
ments for all pixels covered by the surface, and to perform the raycasting in the triggered pixel
shader.

Currently, such raycasting approaches, like that of Papst et al. [285], are not yet competitive
with techniques using tessellation, both in terms of visual quality and particularly speed. One
major issue is the convergence of the intersection finding method. Usually Newton iteration is
employed, whichmay not converge if the starting point is too far off from the actual solution. In
such cases, an intersection is missed, possibly introducing a visible gap in the surface. Because
furthermore the number of required Newton steps depends on the starting point, determining
a good initial guess is essential both for speed and quality.While a tight bounding volume hier-
archy is well suited to derive a close estimate of the actual intersection point, its construction is
far from free, obviating arbitrary per-frame changes to the surface geometry. Note that building
such a hierarchy usually entails an adaptive surface subdivision and hence essentially involves
deriving a (coarse) tessellation. Moreover, in the graphics-pipeline-based raycasting approach,
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the leafs of such a hierarchy are actually rendered to trigger the pixel shader. To avoid incor-
porating tessellation-based surface rendering as part of the raycasting approach, the bounding
proxy geometry should hence be simple and fast to determine on the fly. This, however, is in
conflict with providing good starting points. Adopting Bézier clipping instead is not really an
alternative because, although it can be implemented on the GPU [177, 285], it is complex and
slow. Again, convergence can be sped up by subdividing the surface into smaller patches.

Another limitation of raycasting is that it doesn’t directly and cheaply support antialiasing
of silhouettes, while multisample antialiasing of rasterized triangles comes essentially for free
on current graphics hardware. First, a raycasting pixel shader has to decide whether the whole
fragment belongs to the surface or not, discarding it in the latter case. Only with Direct3D 10.1
it becomes possible to output a multisample coverage mask [338]. Second, determining accu-
rate coverage requires casting multiple rays per fragment, which further slows down rendering
compared to tessellation-based approaches.

Moreover, to correctly integrate raycast surfaces into the rendered scene, the pixel shader
has to explicitly output the actual depth value as this usually differs from the proxy geometry’s
one. On current graphics hardware, this typically disables both the early-z test and z-culling,
and hence can cause superfluous pixel shader executions.

Finally, note that even in case of immediate convergence at least one surface evaluation is re-
quired per processed fragment. Comparing this with exactly one surface evaluation per vertex
encountered in a tessellation-based approach, raycasting can only win if fewer hitting rays are
cast than tessellation vertices are output. Excluding excessive overtessellation, this implies that
some parts of the curved surfaces are occluded and only the visible ones are actually raycast.
But when just rendering proxy geometry and adapting the z value, such a scenario is not possi-
ble. On the other hand, using a raytracing system where the whole image is raycast and hence
only the closest surface needs to be processed, raycasting may outperform tessellation-based
approaches, at least in the long run.

Example: Raycasting of PN triangles

As a concrete example for GPU-based raycasting within the standard graphics pipeline, we
describe our approach for PN triangles [332]. It was among the first presented solutions for
raycasting Bézier surfaces on the GPU. We render a bounding proxy geometry for each PN
triangle and perform a ray–PN-triangle intersection test for each fragment in the pixel shader.

To allow arbitrary changes of a PN triangle’s control points during runtime, the proxy ge-
ometry has to be simple enough to be rapidly constructed anew each frame, for instance in
the geometry shader stage. In particular, creating and drawing the geometry ought to be faster
than the tessellation-based rendering of PN triangles. On the other hand, the proxy geometry
should tightly bound the surface to keep the number of fragments low whose corresponding
rays miss the PN triangle. We opted for a triangular prism whose base facets are parallel to the
plane containing the corner control points. Exploiting the convex hull property of Bézier trian-
gles, the prism is constructed to encompass the PN triangle’s control points. To get a reasonably
tight bound, we actually perform a 1-to-4 subdivision of the PN triangle and fit the prism to the
control points of the resulting four sub-triangles. Note that due to the quadratic convergence of
subdivision, further subdivision steps in general don’t improve the tightness enough to justify
the additional computational effort.

The proxy geometry triggers the actual raycasting process. In the pixel shader, we use New-
ton iteration to determine the intersection of the ray r(t) = o + t d originating at the camera
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Figure 6.10 Examples of PN triangles rendered with our GPU-based raycasting approach.
The lower row visualizes the total number of Newton iteration steps performed for intersection
calculation when utilizing our initial guess heuristic.

position and passing through the pixel center with the PN triangle’s geometry b(u, v). More
precisely, we first represent the ray r(t) as intersection of two orthogonal planes [174]

P1(x) = ⟨n1, x⟩ + d1 = 0,
P2(x) = ⟨n2, x⟩ + d2 = 0.

Finding the intersection nearest to the camera is then equivalent to determining the closest
root of the distance function

D(u, v) =⎧⎪⎪⎪⎪⎪⎩P1(b(u, v))P2(b(u, v))⎫⎪⎪⎪⎪⎪⎭=⎧⎪⎪⎪⎪⎪⎩⟨n1, b(u, v)⟩ + d1⟨n2, b(u, v)⟩ + d2
⎫⎪⎪⎪⎪⎪⎭,

i.e. the nearest point along the ray which has zero distance to the PN triangle’s surface. An
initial guess (u0, v0) of the intersection point is successively updated by Newton steps⎧⎪⎪⎪⎪⎪⎩uk+1

vk+1
⎫⎪⎪⎪⎪⎪⎭=⎧⎪⎪⎪⎪⎪⎩uk

vk
⎫⎪⎪⎪⎪⎪⎭− JD(uk , vk)−1D(uk , vk)

until either a hit is found within a given tolerance, i.e. ∥D(uk , vk)∥ ≤ ε, or the number of steps
exceeds a specified upper bound Nmax. Note that the Jacobian ofD

JD(u, v) =⎧⎪⎪⎪⎪⎪⎩⟨n1, bu(u, v)⟩ ⟨n1, bv(u, v)⟩⟨n2, bu(u, v)⟩ ⟨n2, bv(u, v)⟩⎫⎪⎪⎪⎪⎪⎭
can easily be inverted:

J−1D (u, v) = 1
det JD(u, v)⎧⎪⎪⎪⎪⎪⎪⎩ (JD(u, v))22 −(JD(u, v))12−(JD(u, v))21 (JD(u, v))11

⎫⎪⎪⎪⎪⎪⎪⎭.
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For a more detailed exposition of such intersection calculations, see, for instance, the descrip-
tion by Martin et al. [250].

Choosing a good starting point (u0, v0) is essential for convergence. However, due to our
coarse bounding geometry, it is not possible to reliably estimate the intersection point—in con-
trast to setups where the leafs of a bounding volume hierarchy represent almost flat parts of
the surface. In particular, since the PN triangle may be highly curved, it can happen that a ray
barely misses one part of the surface but actually hits it farther away. Moreover, multiple sur-
face intersections require finding the closest one of them, not just any one. To address these
issues, we resort to the following heuristic. Taking a nearby parametric position for each of the
three corners as well as the center as starting-point candidates, we project the corresponding
surface points6 onto the ray and sort the candidates according to the ray parameter values t of
their projections. Subsequently, a Newton iteration is performed for the first starting-position
candidate. If it doesn’t converge within Nmax iteration steps or if the surface is intersected out-
side the valid parameter domain, a newNewton iteration is initiated for the next starting-point
candidate. Once a hit is reported, the remaining candidates are skipped, the surface normal is
evaluated and the lighting is done. In case all four Newton iterations fail, we assume that the
ray missed the PN triangle and discard the fragment.

Fig. 6.10 shows some examples rendered with our approach. With an NVIDIA GeForce
GTX 280, we achieve frame rates of 230 Hz (a), 154 Hz (b) and 25 Hz (c), respectively, for them
at a viewport of size 1600×1200. Note that these figures don’t include the time for constructing
the bounding prisms, which is done only once in a preprocess but could easily be realized in a
geometry shader. We rarely if ever noticed missed intersections during our tests. In particular,
even difficult cases like that in Subfig. b are handled well. However, they involve high New-
ton step counts, slowing down the intersection calculation. On the other hand, even for nicely
facing PN triangles like in Subfig. a, we generally require more iteration steps than methods
which derive an initial guess from a planar approximation of a leaf node in a bounding volume
hierarchy.This is the price to pay for a simple proxy geometry and a heuristic for starting-point
selection that quite robustly finds the correct intersection.

To verify the reasonability of our heuristic approach, we alternatively used just one New-
ton iteration and derived the starting point by taking the fragment’s barycentric coordinates
with respect to the prism’s triangular base facet. Note that this roughly corresponds to the uv-
texturing technique [285]. For the simple case in Fig. 6.10 a, this proves faster than our method
(660 Hz). The remaining examples, however, suffer from missed intersections. These can be
largely alleviated by subdividing the PN triangles multiple times and constructing separate
bounding prisms for each sub-patch. But for the reasons outlined above, this is exactly what
we want to avoid in the first place.

6.5.3 Direct rasterization

Yet another method to render curved surfaces is to directly rasterize them. Although such al-
gorithms are currently no longer used nor in the focus of active research, they are of significant
historical interest, having been among the standard approaches till the beginning of the 1990s.

Thefirst representatives were scan-line algorithms.They progress row-wise andwithin each
pixel row determine and process the line segments resulting from intersecting the surfaces with
the scan line, i.e. the plane through the row’s pixel centers and the camera point.Three different

6To avoid explicit surface evaluations, we actually take the three corner control points instead of the accurate
near-corner points.
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approaches were published in a joint paper by Lane, Carpenter, Whitted, and Blinn [204]. Sup-
porting a wide range of directly evaluable and differentiable curved surface primitives, Blinn’s
method makes extensive use of Newton iteration. This numerical root finder is utilized to de-
rive the range of rows covered by a surface, to compute the intersections of boundary curves
and silhouette edges with the current scan line, as well as to determine the surface point at
the current pixel center. On the downside, the approach is not robust and might fail in many
special cases.

Whitted generalizes scan-line algorithms for polygons differently, evolving linear polygon
edges to cubic edge curves of bicubic patches. In case of an excessively curved patch, additional
edge curves are specified at interior isolines, effectively subdividing the patch. Similarly, to cap-
ture a patch’s silhouette, (approximating) edge curve segments are introduced. All edge curves
are decomposed into segments monotonic in vertical screen direction. Then, the single inter-
section of the current scan line with a certain edge curve segment is determined via Newton
iteration, switching to a brute-force binary search if it doesn’t converge. Whitted’s method fails
to find internal silhouettes, i.e. silhouette curves that do not intersect the boundaries of a patch.

Finally, Lane and Carpenter perform a kind of on-the-fly tessellation via adaptive subdivi-
sion. They subdivide bicubic patches overlapping the current scan line until all relevant (sub-)
patches can be approximated by a planar quadrilateral. These are then processed like in a stan-
dard polygon scan-line algorithm. Since the non-uniform subdivision may introduce cracks,
the approximation error threshold must be chosen small enough.

Rendering closely spaced isocurves

While such early scan-line algorithms have a low memory footprint, they are slow and suffer
from robustness problems. Later approaches render surfaces as sequences of isocurves spaced
close enough to avoid gaps. They thus sample a surface not along parallel scan lines in screen
space but along parallel lines in parameter space.

Targeting tensor-product Bézier patches, Rockwood [314] first derives sampling step sizes
in u and v parameter direction for each surface from the maximum distance of two successive
control points.These patch-global step sizes are chosen such that for every pixel covered by the
surface at least one sample is generated that maps to it. Ordinary forward differencing [390] is
then used to efficiently emit the sample points and evaluate the surface at them. However, be-
cause the step sizes are fixed throughout the patch, some regions may be severely oversampled,
causing significant pixel overdraw.

This shortcoming is alleviated by adaptive forward differencing [217]. While rendering an
isocurve, the parametric step size is adaptively halved or doubled to maintain a sample spacing
of roughly one pixel in screen space.Note that, nevertheless, the distance between two isocurves
must be chosen close enough to avoid gaps, and hence oversampling can still occur. Thanks
to a unified formulation as linear parameter substitution ( f (t) → f (ϕ(t))), adaptive forward
differencing directly augments fast traditional forward differencing (ϕE(t) = t + 1) with the
adaptivity of subdivision (ϕL(t) = 1/2 t, ϕR(t) = 1/2 t + 1/2). The original approach for bicubic
patches was later extended to arbitrary degrees and non-uniform (rational) B-splines [353].
This version also keeps the distance between two isocurves as a function in Bézier form to
efficiently determine the inter-curve spacing. Steketee [366] presents an improved algorithm,
observing that previous adaptive forward differencing methods are not completely correct as
they may not generate a sample for each pixel overlapped by the surface.
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The remaining issue of oversampling due to overlapping isocurves is addressed by Elber
and Cohen [109]. Instead of rendering complete isocurves, they adaptively determine partial
isocurves sufficient to cover each pixel with a sample. Starting with two boundary curves, two
adjacent (partial) isocurves are recursively processed. First, a function of their distance is tested
for roots. If none exist, and the two curves are already close enough, we are done. Otherwise,
a new curve is introduced in between the two curves, and the new curve pairs are processed
recursively. Finally, in case roots are found, the two curves are split at the roots, and the pairs
of corresponding curve segments are treated recursively.

A different approach is taken by Rappoport [309] with his hybrid rendering algorithm. If a
patch is deemed directly renderable, it is output with forward differencing using constant step
sizes for intra- and inter-isocurve sample spacing.Otherwise, the patch is subdivided according
to which direct rendering criterion is not satisfied, and the algorithm gets applied recursively.
These criteria check for sufficient geometric flatness, uniform spacing of control points, and
whether the required sample count is small enough to keep the numerical error accumulated
during forward differencing within bounds avoiding artifacts.

Whereas the scan-line methods were not intended for hardware implementation, the ones
based on (adaptive) forward differencing are amenable to such a realization and sometimes
even were designed for it. However, creating some special hardware seems to make little sense
because it would be restricted to a single primitive like bicubic tensor-product Bézier patches.
On the other hand, efficient software solutions for such isocurve evaluation schemes are possi-
ble [67]. We reckon that on future hardware like Intel’s Larrabee [349], where custom graphics
pipelines can be crafted, rasterizing isocurves may become an option for some applications. A
kind of coarse subdivision scheme may prove useful not only for reducing oversampling but
also to generate screen-space-localized, parallelizable work items. The semantics of executing
a shader instance per fragment also have to be sorted out. This is challenging because a pixel
may be hit by multiple samples of the same surface. Moreover, the pixel-relative positions of
the sample points in general vary per pixel, requiring some additional processing to enable
consistent texturing.





CHAPTER 7

Adaptive tessellation

The ability to efficiently render curved surfaces in real time and within the standard raste-
rization-based graphics pipeline is key to enabling direct usage of curved surfaces as output
primitive in graphics applications. Recall that this has many advantages, like only having to
maintain a compact description or making animation easy and cheap. Tessellation-based ap-
proaches, which first convert a curved surface into a piecewise-linear approximation and then
render the resulting triangles, are themost suitable and promisingmethods to achieve this goal.

In this chapter, we discuss adaptive tessellation inmore detail. Striving to harness the power
of modern graphics hardware to achieve high performance, we primarily focus on GPU-based
approaches. Moreover, justified by the reasons outlined in Sec. 6.5, we concentrate on Bézier
surfaces. After clarifying the objectives we aim for, like adaptivity, parallelizability, and water-
tightness, we studymethods performing repeated subdivision until the approximation is locally
good enough.

The rest of the chapter is dedicated to the competing approach of first determining the
sampling density required to well approximate a surface patch and subsequently generating a
tessellation by sampling the patch accordingly. We discuss both creating tessellation patterns
which satisfy a given sampling density, and how to derive tessellation factors specifying the
sample spacing. Concerning the actual rendering, one technique is to use generic tessellation
patterns in parameter space, often called refinement patterns, andmap them to object space by
evaluating the surface at the parametric coordinates associated with the patterns’ vertices. After
dealing with this method in detail and describing our contributions, we present an alternative
technique, our CudaTess framework. Using a surface patch as unit of parallelism, it runs all
major steps on the GPU and generates an object-space tessellation on the fly. We conclude the
chapter with a discussion and a comparison of these two different methods.

7.1 Objectives

When tessellating a curved surface, we ultimately strive for a triangular approximation that
is efficient and fast to both determine and render, and that is visually reasonably close to the
actual surface and not suffering from visual artifacts. In practice, this overall goal translates to
several criteria and requirements.

111
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Adapting sampling density

During the conversion into a triangular approximation, the sampling density should be high
enough to ensure visual smoothness; in particular, silhouettes have to appear curved andnot re-
veal their piecewise-linear approximation. On the other hand, (excessive) oversampling ought
to be avoided for performance and quality reasons. A too fine tessellation takes longer to com-
pute than necessary and consumes more memory space and bandwidth. Moreover, rendering
the resulting triangles may become slower. Not only can the GPU’s triangle setup stage turn
into a bottleneck, but the occurrence of many small triangles covering just a single pixel or
very few pixels reduces the efficiency of the rasterizer and the effective parallelism in the pixel
shader stage. Recall that usually fragments are assigned in blocks of 2×2 to the shader proces-
sors to be able to compute derivatives required in selecting a texture mipmap level. In case of
triangles resulting in a tiny fragment count, the fraction of the processors that are essentially
idle is hence rather large. Finally, if several pixel-sized triangles are mapped to the same pixel,
spatial and especially temporal aliasing may occur.

Consequently, the surface tessellation should be adaptive, i.e. the sampling density should
locally be varied to both avoid undersampling and keep oversampling to a minimum. Note,
however, that we don’t seek to find the optimal sampling which has the lowest possible sample
count needed to satisfy some error metric. While this may be reasonable in other application
domains, our goal is to derive and render a sufficiently fine tessellation as fast as possible. In
particular, to allow updating the surface description during runtime, for instance to animate
the surface, it must be possible to efficiently and quickly determine the complete tessellation
anew each frame.

Good parallelizability

Fundamental to fast execution on the GPU is the ability to parallelize the task. Moreover, de-
pendencies among the parallel work items should be avoided or at least kept to a minimum.
Usually, a complex surface is broken into multiple parts that can be processed independently;
together the resulting partial tessellations then yield the overall piecewise-linear approxima-
tion. Independent processing, however, typically comes at the cost of redundancy, like evaluat-
ing the surface twice along curves where two surface parts meet. It is hence important to find
a good balance between the granularity of parallelization and the associated overhead due to
redundancy but also due to setting up the work items.

Note that since in our assumed setup complex surfaces are described by a collection of
abutting Bézier patches or triangles, an initial surface decomposition is readily available. One
possible way to achieve the combined objective of parallelizability and providing a reasonable
adaptation of the sampling density to avoid excessive oversampling is uniformly sampling each
Bézier surface patch but choosing a patch-specific sampling rate.

Avoiding visual artifacts

When treatingmultiple parts of a surface, for instance individual Bézier patches, independently
from each other, care must be taken to avoid visual artifacts. In particular, the triangle mesh
implicitly defined by the union of the partial tessellations should be watertight (cf. Fig. 7.1).
That is, the two tessellations of two abutting surface parts should have identical vertices along
the boundary curve where they meet.
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(a) Cracks (b) T-vertices (c) Watertight tessellation

Figure 7.1 A watertight tessellation is free of cracks and T-vertices, both of which typically
result in visual artifacts.

If a common boundary curve is sampled at different rates by the two adjoining patches,
the two corresponding polyline approximations in general do not coincide and cracks are in-
troduced into the surface. These lead to holes in the mesh or cause neighboring triangles to
overlap, often resulting in severe visual artifacts.

But even if the two polyline boundary approximations coincide mathematically, i.e. all ver-
tices of one polyline lie on the other one and vice versa, problems may arise. Vertices of one
polyline which have nomatch on the other polyline, so calledT-vertices, can evokemissing pix-
els, resulting from the limited numerical precision within the rasterizer stage. While this may
be alleviated to a certain degree by increasing the number of coverage samples per pixel, i.e.
enabling MSAA, minor artifacts still occur. Furthermore, T-vertices induce shading problems
if a non-linear quantity is interpolated along the polylines. Also note that in case a displace-
ment is applied to the tessellation, a T-vertex typically no longer lies on the other polyline and
hence transforms into a crack. One way to circumvent missing pixels is to stitch the two poly-
lines together with a strip of triangles, each connecting a vertex of one polyline with an edge
of the other polyline. However, such zero-area triangles may cause artifacts when the surface
is rendered with alpha blending, don’t solve interpolation-related shading problems, and re-
quire additional geometry. Note that T-vertices may also result from input surfaces where two
patches only partially share a boundary curve. In such settings, it is not enough to choose a
consistent sampling rate but further special processing is required.

Finally, if a shared boundary curve is sampled at the same rate by the two neighboring
patches but the involved parameterization directions differ, limited numerical precision may
still cause mathematically equivalent points to be slightly different, potentially leading to vi-
sual artifacts. There are two sources of numerical deviation. First, the order in which terms
are evaluated may differ for the two adjoining patches. This can be addressed by enforcing a
consistent order of boundary control points across patches. Another option is reorganizing the
evaluation computation into a symmetric form, which guarantees that the order in which cor-
responding non-zero terms are combined for samples on a boundary curve is independent of
the parameterization direction. For instance, a bicubic Bézier patch may be computed as [62]

b(u, v) = (((b00B30(u) + b10B31(u)) + (b20B32(u) + b30B33(u)))B30(v) + ( 3∑
i=0

bi1B3i (u))B31(v))
+ (( 3∑

i=0
bi2B3i (u))B32(v) + ((b03B30(u) + b13B31(u)) + (b23B32(u) + b33B33(u)))B33(v)),

where parentheses are meant to enforce computation order. Note that such a formulation usu-
ally entails an increased arithmetic operation count.
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The second source of numerical difference is that corresponding parametric sample coor-
dinates may not match exactly; for instance, i

n is numerically typically not the same as 1 − n−i
n

for a non-power-of-two sampling rate n. Any numerical inaccuracy problems can be avoided
by actually sharing the common boundary vertices, i.e. using the ones computed for one patch
for the tessellation of both patches. Note that this requires a synchronization among the two
associated parallel work items after having independently performed the patch tessellation. A
simple realization just copies the vertex data from one patch’s tessellation to the other one’s, or
merely the positions if other vertex attributes like color don’t match.

While cracks but also the occurrence of T-vertices routinely cause artifacts, we never expe-
rienced problems due to an inconsistent evaluation order.Therefore, we don’t bother to address
numerical evaluation inaccuracies in the remainder of this chapter, noting that a remedy could
easily be incorporated at the cost of probably marginally reducing performance.

Finally, since long and thin triangles can cause shading problems, it is desirable that the
triangles in a tessellation are well shaped, ideally being roughly equilateral. We further note
that additional care is typically required to avoid artifacts when applying displacement map-
ping [62], which is beyond our scope, though.

7.2 Recursive refinement

As mentioned before, one main method for obtaining a tessellation is repeated subdivision.
For each patch, a polygon can be constructed from its corner control points. Subsequently,
this initial approximation is recursively refined by subdividing the patches and splitting the
polygons accordingly until the resulting approximation is considered good enough.1 Note that
we refer to initial input patches as base patches, and usually treat the sub-patches resulting from
subdivision as individual patches.

7.2.1 Refinement criteria

The decision whether and how to subdivide a patch (and split its polygon) and thus refine the
approximation is guided by refinement criteria, which are usually completely local to a patch.
They typically check for flatness of the boundary curves of the patch aswell as of its interior part.
If these are deemed sufficiently linear or planar, respectively, the approximation is considered
fine enough and the recursion stops.

Flatness is often determined using themaximumscreen-space distance of a boundary curve
to its linear approximation, or of a patch to its triangular approximation, respectively, with
polygonal faces being triangulated. In practice, it suffices to just compute an estimate of this
distance bound. A simple example is to take the parametric midpoint along a boundary curve
and determine its distance to the line segment by which the curve currently gets approximated.
However, this may underestimate the overall deviation, especially for S-shaped curves. Alter-
natively, a conservative bound can be derived by considering the distance of the control points
to the line segment, thus exploiting the convex hull property of Bézier curves. Analogously,
approximation distance estimates can be determined for patch interiors. Note that to simplify

1In principle, it suffices to only split the polygons and compute the newly introduced vertices from the in-
put patch without subdividing it. While this keeps storage requirements low and allows fast refinement, it often
complicates the procedure employed for deciding whether the approximation needs further refinement, since this
decision is usually based on properties of the related subpart of the surface, for which now no explicit represen-
tation exists. In practice, this approach is hence rarely considered for adaptive tessellation.
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Figure 7.2 Subdivision cases for a rectangular domain.

computations, often the point distances are determined not with respect to a line segment or
a triangular face, respectively, but to the whole corresponding line or plane, potentially under-
estimating the approximation error.

Using just point-to-surface distances to judge flatness may fail in some special cases like
loops in boundary curves [129], which, however, can be detected and handled appropriately if
desired. Another option is to compute point-to-point distances, for instance of control points
to their corresponding points in the linear approximation. In case of a degree-n Bézier triangle,
the control point bi jk would be compared against 1/n(i bn00 + jb0n0 + k b00n), which is the cor-
responding control point of the triangular approximation elevated to degree n. Note that such
an approach not only keeps the geometric deviation bounded but also the parameterization
approximation error, which is desirable for texturing.

Another way to test for flatness of a boundary curve is to compare the length of the poly-
line formed by its control points against the length of the approximating line segment [204].
Similarly, a patch may be considered flat if the deviation of the surface area of the control net
from the area of the approximating polygon is within a tolerance.

Apart from flatness, which is by far the most widely used criterion, often additional criteria
are employed that prevent refinement if the patch is not visible, for instance because it is out-
side the view frustum. Another extension may choose the deviation threshold below which a
flat approximation is considered acceptable to be larger for non-silhouette regions. Some ap-
plications also require different or further criteria, like one keeping themaximum screen-space
coverage per approximating polygon bounded. Finally, note that in case a displacement map is
applied, specific refinement tests exist [94, 257].

7.2.2 Refining a rectangular domain

Depending on the domain shape of a surface patch, different options of how to subdivide
the patch and hence split its approximating polygon exist. We first consider patches with a
rectangular domain, like tensor-product Bézier patches, and cover the triangular case later in
Sec. 7.2.3.

For rectangular domains, the basic refinement is a 1-to-2 split, which subdivides the patch
along one of the center isolines u = 1/2 or v = 1/2.2 By compositing two such bisections, one in
u and one in v direction, a patch may also directly be split into four sub-patches (see Fig. 7.2).

2To keep the presentation clear and the expressions short and simple, we always implicitly refer to the unit
domain [0, 1]2 throughout this chapter. Note that expressions for an arbitrary rectangular domain [u0, u1] ×
[v0, v1] are easily obtained via the mapping ξ ↦ (1 − ξ)ξ0 + ξξ1, ξ ≡ u, v. The analogous holds for the triangular
case.
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(a) Successive 1-to-2 subdivisions (b) Successive 1-to-4 subdivisions

Figure 7.3 Adaptively refined Utah teapot. Recursively subdividing patches into two sub-
patches results in fewer primitives (15771 vs. 24413 quads) but requires more subdivision steps
(up to 11 per base patch vs. 6) than splitting into four sub-patches.

A common approach [75] is now to first check whether any of the boundary curves along
u direction (v = 0, v = 1) is not sufficiently flat, in which case the patch gets subdivided at
u = 1/2. Otherwise, an analogous flatness test is performed for the boundary curves in v direc-
tion (u = 0, u = 1), splitting the patch along v = 1/2 in case of failure. If all boundary curves
are considered adequately flat, the patch itself is checked for flatness. In case it passes, the ap-
proximation is good enough and the refinement stops; a quad is constructed from the patch’s
corner control points and emitted for rendering. If, however, the patch is not sufficiently flat
yet, it is bisected along either u or v parameter direction. Ideally, that split direction is chosen
whose corresponding edges are longest in screen space, resulting in more square-like quads.
The whole procedure is applied recursively to the newly generated sub-patches.

To reduce the number of subdivision steps necessary and hence the depth of recursion, one
may directly perform a 1-to-4 split if both in u and in v direction at least one boundary curve
is not flat. Sometimes, it is also desirable to exclusively use 1-to-4 splits, in which case a single
flatness test for the whole patch suffices.

We implemented tessellation by recursive subdivision for bicubic Bézier patches. Flatness
is assessed using the distance of the control points to the corresponding points in the related
(triangulated) quad approximation. We perform either only 1-to-2 splits or exclusively 1-to-4
subdivisions. Fig. 7.3 shows an example using both variants.

Cracks and T-vertices

Because each (sub-)patch is processed individually and the recursion depth is controlled by
flatness and is hence not globally uniform, the union of the resulting quads in general yields a
non-watertight tessellation suffering from cracks and T-vertices. Unfortunately, these artifacts
cannot completely be avoided unless each patch keeps some information about its neighbor-
hood. Alternatively, some global post-processing step may be run.

Since operating completely patch-locally simplifies implementation andparallelization, one
popular class of methods keeps this locality but in consequence only prevents cracks but not T-
vertices and thus accepts some remaining artifacts.We detail such crack-avoidance approaches
later in Sec. 7.2.4.
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Note that the repeated subdivision of a patch implicitly defines a tree. One technique that
actually yields a watertight tessellation but requires some global control enforces this tree to be
a restricted quadtree [388]. That is, only 1-to-4 splits are allowed and two leaf nodes adjacent
in parameter space may differ by at most one tree level. To satisfy this constraint, some nodes
may have to be further subdivided despite already being flat enough. Once the quadtree is built,
appearing cracks in the corresponding tessellation are efficiently filled. More precisely, when-
ever a quad of subdivision level i abuts in parameter space along an edge to two quads of level
i + 1, the coarser-level quad is refined by adding a vertex at the T-junction. Subsequently, the
modified quad face is retriangulated, for instance by introducing a central vertex and building
a triangle fan.

Fast subdivision

It is worth mentioning that to rapidly perform subdivision, special patch representations have
been developed. Catmull [65] proposes the polynomial basis defined by the functions

C0(t) = 1 − t, C1(t) = − 1
3 t
3 + t2 − 2

3 t, C2(t) = 1
3 t
3 − 1

3 t, C3(t) = t

to represent cubic curves. Amidpoint subdivision at t = 1/2 can then be realized with only three
adds and four shifts.

Equivalently, Clark [75] suggests employing central differencing, which we briefly review
here due to its wide-spread use. Considering a cubic curve c(t), its Taylor expansion

c(t + Δt) = c(t) + Δtc′(t) + 1
2Δt

2c′′(t) + 1
6Δt

3c′′′(t)
leads to an evaluation expression as central difference along with a higher-order term:

c(t) = 1
2(c(t − Δt) + c(t + Δt)) − 1

2Δt
2c′′(t).

This can be used to efficiently compute the midpoint at t = 1/2 during subdivision from the
endpoints c(0) and c(1), choosing Δt = 1/2. Therefore, given a bicubic patch b(u, v), a split in
u direction involves determining

b( 12 , v) = 1
2(b(0, v) + b(1, v)) − 1

8buu( 12 , v)
for both v = 0 and v = 1. The required second-order partial derivative

buu( 12 , v) = 1
2(buu(0, v) + buu(1, v))

is also computed by central differencing. Because a later, analogous subdivision in v direction
needs the values of bvv(u, v) at the patch corners, this quantity must be updated, too. Since
bvv(u, v) is cubic in u like b(u, v), it is computed by

bvv( 12 , v) = 1
2(bvv(0, v) + bvv(1, v)) − 1

8buuvv( 12 , v),
using central differencing to determine the fourth-order mixed derivative

buuvv( 12 , v) = 1
2(buuvv(0, v) + buuvv(1, v)).

Consequently, a bicubic patch is represented by four corners instead of 16 control points, each
storing the quantities b(ui j, vi j), buu(ui j, vi j), bvv(ui j, vi j) and buuvv(ui j, vi j).

Note that the derivative terms can be used to quickly decide whether a further 1-to-2 sub-
division is required and along which parameter direction. For instance, the boundary curve
u = 0 may be considered sufficiently flat if all components of both bvv(0, 0) and bvv(0, 1) are
below a certain magnitude threshold [75].
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(a) 1-to-2 split (b) 1-to-3 split (c) 1-to-4 split (d) Internal 1-to-3 split

Figure 7.4 Subdivision cases for a triangular domain.

7.2.3 Refining a triangular domain

Compared to the rectangular case, the triangular domain offers a greater variety and hence
flexibility concerning topological refinement. As depicted in Fig. 7.4, just a single boundary
curve may be subdivided, or two, or all three. Alternatively, only the interior is refined without
splitting the boundary curves.

To tessellate a triangular patch via repeated subdivision [129], one hence may first check
all boundary curves for sufficient flatness. If at least one curve fails the test, a subdivision is
performed that splits all non-flat boundary curves. Otherwise, the patch interior is checked for
adequate flatness. In case of failure, the interior is subdivided but not the boundary curves. If all
flatness tests are passed, the approximating planar triangle constructed from the patch’s corner
control points is output and the recursion stops. Note that the resulting tessellation doesn’t
suffer from cracks or T-vertices, since the subdivision of a boundary curve is guided by the
curve alone and not influenced by the rest of the patch.

On the other hand, the resulting shapes of the triangles are often elongated and rather thin.
This can be alleviated by using just 1-to-4 splits, producing only triangles equilateral in param-
eter space. However, such a shape improvement comes at the price of introducing cracks and
T-vertices in the tessellation, like in the rectangular case.

An alternative that performs solely quadrisections for refinement but yields a watertight
tessellation is red-green triangulation [21]. It essentially enforces that the resulting tessellation
is restricted such that two adjacent triangles differ by at most one level of subdivision. Finally,
all triangles are subdivided along those boundary curves where they adjoin triangles of greater
subdivision level, thus stitching any cracks. Concerning terminology, a triangle is green if it
is an initial base triangle or results from a 1-to-4 split. Triangles originating from any of the
other subdivision cases are called red. A green triangle may be further refined, whereas a red
one only serves to terminally make the tessellation conforming by closing cracks and hence
must not be subdivided. Instead, the split generating the red triangle is reversed and a green
1-to-4 subdivision performed, possibly triggering further splits of the neighboring triangles.
Note that such a scheme requires global control and is amenable to parallelization only to a
limited extent.

Choosing PN triangles as example, we implemented recursive refinement using the distance
of control points to the matching points on the approximating triangle as flatness measure.
Fig. 7.5 shows results obtained both when utilizing all discussed splits as well as just quadri-
sections.
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(a) Successive 1-to-{2,3,4} subdivisions (b) Successive 1-to-4 subdivisions

Figure 7.5 Adaptively refined double torus. Compared to just subdividing into four sub-
patches, also allowing to split into two or three sub-patches results in fewer primitives (16540
vs. 22581 triangles) and yields a watertight mesh but requires slightly more subdivision steps
(up to 4 per base patch vs. 3).

7.2.4 Locally handling cracks

Ideally, the decision whether to subdivide a patch is based only on information about the patch
itself, thus allowing utmost parallelism. In particular, to ensure that shared boundary curves
are tessellated consistently by both adjoining patches, a boundary curve should only be subdi-
vided if indicated by the curve itself. This, however, is not guaranteed in the rectangular do-
main, where the decision to split a boundary curve also forces the opposing boundary curve
to be subdivided. Moreover, splitting the patch interior necessitates subdividing two boundary
curves, too. Similarly, if only quadrisections are used in the triangular setting, boundary curves
needing no further refinement are enforcedly split. A consequence of such unwanted but topo-
logically required subdivisions are inconsistencies across patches, manifesting themselves as
cracks and T-vertices in the resulting tessellation.

Such artifacts can be alleviated by performing a global stitching after repeated subdivision
is completed. Examples of related methods include the presented restricted quadtree approach
and red-green triangulation. However, these usually elude an effective parallelization.

An alternative that avoids global bookkeeping but only partially solves the problem is sug-
gested by Clark [75] who exploits that once a boundary curve is considered flat enough, it may
be approximated by a straight line segment. Consequently, if the curve is further subdivided,
nevertheless, the newly introduced midpoint vertex can safely be forced onto this line segment
without violating sufficient flatness. Since this approach ensures that the final piecewise-linear
approximation of a base boundary curve depends only on the curve itself, cracks are avoided.
On the other hand, T-vertices still exist; in particular, each prevented crack results in a T-vertex.

In his algorithm, Clark actually adapts the control points to make the boundary curve it-
self a straight line segment. While simple, this modifies the patch and hence introduces an
error [22], which visually results in shading discontinuities. These can be alleviated by using
the original patch for shading, or alternatively a separate normal field patch as employed by PN
triangles.
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A better solution is to keep sub-patches unmodified and note which vertices are supposed
to lie on a line segment, forcing themonto it only when the recursion is completed and a quad is
output.This can be achieved by associating a line segment to a boundary curve that has become
flat [22, 129], or by explicitly storing adapted corner points along with flatness flags for each
boundary curve [296], or by utilizing edge equations [283].

7.2.5 GPU-based implementations

Executing a single subdivision step for many patches or control faces is easy to parallelize,
since each such element can be processed individually. Hence, it is not surprising that several
approaches exist which perform the actual subdivision on the GPU. On the other hand, adap-
tively controlling the subdivision level and especially generating a final watertight tessellation
are usually still performed on the CPU.

Losasso et al. [234] perform only uniform subdivision, i.e. the whole surface is subjected
to the same number of subdivision steps. Their method operates on a closed surface described
by a single smooth geometry image which corresponds to a uniform bicubic B-spline patch. Its
control net is stored in a texture. A single subdivision step consists of topological refinement,
quadrisecting each control face, and subsequently adapting the control points by averaging.
It is realized by two corresponding passes, each time rendering a filling quad into an appro-
priately sized texture, with each texel storing a control point computed by the triggered pixel
shader. After the desired number of subdivision steps have been executed, the control points
are projected onto the B-spline surface using limit masks, and the associated analytic normals
are derived via limit tangent masks. Finally, the corresponding quad mesh is rendered.

As mentioned earlier, the most natural way to render subdivision surfaces is to perform
repeated subdivision and output the resulting tessellation. Shiue et al. [357] present a related
GPU-based approach which supports a wide range of subdivision schemes. Concentrating on
Catmull-Clark subdivision, the input control mesh has to comprise only quads with at most
one extraordinary vertex, possibly necessitating an initial subdivision step executed on the
CPU. The input mesh is then decomposed into overlapping fragment meshes, each consist-
ing of a center vertex (of valence k) and two rings of vertices surrounding it. Each fragment
mesh is stored in a 1D texture, linearly arranging the vertices via spiral enumeration. A single
subdivision step refines and enlarges the fragment mesh and is performed by rendering into
an according 1D texture. In the invoked pixel shader, that subdivision mask is applied which
yields the vertex corresponding to the current fragment.Themasks are obtained from a lookup
texture which for each element of the new fragment mesh stores a specific mask, comprising
texel indices for accessing old fragment mesh vertices and the mask type. Note that for each
supported valence k a separate mask lookup texture is required. For a maximum subdivision
depth nmax, this consists of 3ℓk(nmax)RGBA texels, where ℓk(n) = 1+k(1+2n)(2+2n) denotes
the texture size for a valence-k fragment mesh after n subdivision steps. Once subdivision is
completed, the vertices are copied into a vertex buffer and normals are computed. While this
approach doesn’t directly support adaptive subdivision, it is noteworthy that the masks are
evaluated in a symmetric fashion to yield a watertight mesh.

In a relatedmethod, Bunnell [56] performs coarse-grained adaptive subdivision ofCatmull-
Clark surfaces. Pursuing a patch-based approach, the input control mesh is decomposed into
smallermeshes that can be stored in a 2D texture alongwith their one-ring. For all patches, flat-
ness is tested on the GPU and the results are read back to the CPU. Patches requiring further
refinement are then subdivided on the GPU by drawing quads into new textures, applying the
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subdivision masks in the pixel shader. Note that subdividing a patch results in another patch
with a larger control mesh instead of individual sub-patches.3 Consequently, the subdivision
level can only be varied among the initial patches but not within any of them. Once a patch is
subdivided enough, limit surface positions and normals are determined and stored in a global
vertex buffer. Finally, an index buffer is generated on the CPU which yields a tessellation free
of cracks and T-vertices. This is possible because the subdivision process is controlled by the
CPU, and hence global knowledge about the refinement depths and vertex indices exists.

More recently, Patney and Owens [288] utilized CUDA to realize a simplified subset of the
surface subdivision stage of the Reyes rendering pipeline [78] on the GPU. They focus on the
special case of bicubic Bézier patches and implement only that parts which are straightforward
to parallelize. All patches are first repeatedly subdivided until the screen-space footprint of each
sub-patch is at most 8×8 pixels; subsequently each sub-patch is diced into a grid of 16×16 mi-
cropolygons.The resulting sub-pixel-sized quads can then be rendered.More precisely, all base
patches are initially provided in an input buffer. ACUDAkernel is run to process them in paral-
lel, launching a thread for each control point. Note that for the considered bicubic patches such
a control-point-parallel approach doesn’t require explicit inter-thread synchronization, since
the 16 control points of a patch map to a half-warp. The kernel first computes a screen-space
bound of each patch. If it is outside the view frustum, the patch gets culled. If the bound exceeds
8×8 pixels, the patch is split into two sub-patches; otherwise the patch is kept unmodified.The
result is stored in a buffer with two slots available per input patch. For culled patches both slots
remain empty, and an unsubdivided patch leaves the second slot unoccupied. Therefore, the
buffer is subsequently compacted to yield a contiguous list of patches.This serves as new input
for a further round of subdivision. Once subdivision is completed, dicing is performed using
one thread per micropolygon.

Unfortunately, the approach suffers from several problems. First, cracks arising from using
different subdivision levels are not dealt with. Instead this challenging issue is postponed for
future work. Second, the way subdivision results are stored is far from optimal. Since both un-
processed patches and patches already determined to require no further subdivision are stored
mixedly in a common buffer, completed patches are unnecessarily processed repeatedly, wast-
ing both computational resources andmemory bandwidth.Third, the compaction step involves
copying patch data. This could be avoided and hence memory bandwidth be saved by first de-
termining the number of output slots required per input patch and then writing directly to a
contiguous patch list. Note that such an efficient approach is actually pursued in our patch-
parallel technique described in Sec. 7.6. Fourth, the performance is not that impressive despite
high parallelization and good utilization of resources.This is probably due to efficiency deficits,
like the mentioned wasted memory bandwidth and redundant patch processing.

Finally, note that subdivision-based tessellation can also be performed using the geome-
try shader stage. Patches are input using an appropriate primitive topology, and the geometry
shader performs a subdivision or just passes through the patch. The output patches are cap-
tured in a stream output buffer that subsequently serves as input for the next subdivision step.
Once no further subdivision is required, approximating triangles are generated for each patch
using another geometry shader and rendered directly.

3While in principle possible, this would cause a significant overhead because neighboring sub-patches have
to overlap in their two outer rings of quad faces. Recall that a patch representing a certain part of the surface
not only stores the corresponding mesh but also its one-ring neighborhood to enable further application of the
Catmull-Clark subdivision rules.
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7.2.6 Discussion

Adaptive subdivision might seem an attractive approach to perform tessellation of curved sur-
faces.The subdivision itself is easy to parallelize and amenable to an efficient GPU implementa-
tion. The sampling density is highly adaptable, varying not only per base patch but also locally
within a base patch. Moreover, the sampling rate is typically guided by the actual screen-space
flatness instead of some more conservative object-space criterion. Together, this avoids exces-
sive overtessellation.

Closer inspection, however, reveals that recursive refinement suffers from several short-
comings; in particular, it appears to be not the most suitable way to realize tessellation-based
rendering of curved surfaces. As already detailed before, one major issue is the avoidance of
cracks and T-vertices. For high performance, related methods should ideally operate com-
pletely patch-locally to maintain mutual independent work items for parallel execution. While
a techniquewith such characteristics exists for preventing cracks (cf. Sec. 7.2.4), basically trans-
forming them to T-vertices, the avoidance of T-vertices eventually requires some global con-
text. This typically involves some non-trivial bookkeeping and necessitates either inter-patch
communication or some predominantly sequential, global post-processing. In particular, a
patch that needs no further subdivision may not be directly rendered but has to wait until all
its neighboring patches have completed refinement, essentially requiring the explicit storage of
all completed patches. Note that just ignoring T-vertices is not really acceptable because of the
resulting visual artifacts, like missing pixels or shading discontinuities.

Another issue is that although a subdivision step may be realized efficiently on the GPU
and high resource utilizations are achievable, thewhole approach is usually not that efficient be-
cause redundant work is performed and consumption ofmemory bandwidth and space is high.
For utmost parallelism and adaptivity, each patch is typically processed independently, and the
sub-patches resulting from subdivision are treated and stored as individual patches.This, how-
ever, implies that boundary curves shared by two sub-patches are processed and stored twice.
Similarly, after subdivision has been completed, each patch is represented by an isolated quad
or triangle, respectively. This causes high storage costs, since each interior valence-k vertex of
the corresponding tessellation is stored k times. Moreover, the vertex shader stage is slowed
down because the post-transform vertex cache is of no use when logically identical vertices are
redundantly represented by different entries in the vertex buffer. Finally, repeated subdivision
runs in multiple passes and hence intermediate storage is required to capture the output of one
pass and provide it as input for the next subdivision round. Especially the involved writes and
reads to the graphics hardware’s device memory entail a significant overhead.

Furthermore, the adaptivity of the sampling density is actually rather restricted because
only successive bisections of boundary curves are performed. Consequently, in the worst case
each parameter direction may be oversampled by a factor of almost two. For instance, if ten
equidistantly spaced samples (including the endpoints) are required for a curve, actually 17
sample points are produced by repeated subdivision.While, on the other hand, adaptive refine-
ment can locally vary the sampling density and hence is not restricted to a uniform sampling,
we observe that in practice the variation within a base patch is usually rather low, at least for
bicubic Bézier patches and cubic Bézier triangles. This is even the case if the screen-space ex-
tent of the patch is quite large, like in the Utah teapot example in Fig. 7.3. Therefore, a uniform
sampling with an integer sampling rate will often result in a tessellation with a comparable or
even smaller number of faces as when performing adaptive subdivision. Moreover, uniform
sampling yields nicely shaped faces in parameter space. Also note that if only 1-to-4 splits are
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used during refinement to keep the subdivision depth low, unnecessary oversampling in one
parameter direction may occur.

The path-based adaptation algorithm by Velho and de Figueiredo [385] seeks to derive an
optimal sampling. Avoiding cracks and T-vertices, this quasi-local approach decouples deter-
mining the sampling from the actual subdivision process. Starting with a given domain tessel-
lation consisting only of triangular faces, an appropriate adaptive sampling of the curves corre-
sponding to edges in the tessellation is computed, essentially yielding polyline approximations
for them. Subsequently, all patches (corresponding to facets in the tessellation) which feature at
least one boundary curve that is approximated by more than one line segment are subdivided,
choosing each subdivision point “optimally” from the affected curve’s sample points. Taking
newly introduced edges and sub-patches into account, this procedure is then repeated until
no further subdivision is required. Since the approach relies on an initial domain tessellation
whose edges cover all relevant areas, the method probably fails if the corresponding surface
curves are flat and a highly curved part hence gets missed. While still essentially perform-
ing recursive refinement, this technique incorporates some characteristics of the alternative
approach of first determining the required sampling density and then sampling the patch ac-
cordingly to produce its tessellation. We cover this competing approach in the remainder of
this chapter.

7.3 Tessellation patterns

Themethod nowwidely used for tessellating curved surfaces and also advocated by the upcom-
ingDirect3D 11 first derives the desired sampling rate and subsequently generates an according
tessellation. The unit-domain locations of the sample points corresponding to the vertices of
such a tessellation as well as its topology are typically described by a tessellation pattern. A cer-
tain pattern is selected by specifying the sampling rates along the domain boundaries and for
the domain interior, usually chosen as either the minimum or the maximum of the boundary
sampling rates. Often, these rates are expressed as tessellation factors, which refer to the num-
ber of line segments along a boundary and equal the inverse of the sampling step size. Several
different schemes exist for creating a pattern that satisfies prescribed sampling densities. In this
section, we review some of them and detail our method for generating tessellation patterns.

7.3.1 Patterns for rectangular domains

For a rectangular domain, the tessellation pattern is uniform if all factors in u direction are
identical as well as all those in v direction. In general, however, the tessellation factors for two
opposing domain boundaries differ to ensure a watertight overall tessellation. This flexibility
to choose a sampling rate for each boundary curve individually allows a patch’s tessellation to
abut seamlessly on those of the neighboring patches. An according tessellation pattern consists
of a uniform core and a transition region at each boundary where the tessellation factor differs
from the corresponding interior factor. Within such a factor transition region, the boundary is
stitched to the interior core using a strip of triangles. The concrete method we use is detailed
later in Sec. 7.3.3.

Some example patterns are illustrated in Fig. 7.6. Uniform parts are colored yellow, while
different shades of brown indicate individual transition regions. Subfigs. a–c are representative
of our own scheme. Since we choose the interior tessellation factor for a certain parameter
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Figure 7.6 Various tessellation patterns for a rectangular domain.

direction as theminimumof the two corresponding boundary factors, the uniform core always
extends to at least two boundaries while at most two transition regions occur. This scheme is
essentially equivalent to Moreton’s [255], who utilizes the maximum operator to derive the
internal factors.

By contrast, the tessellation stage of the upcomingDirect3D 11 [252] allows explicitly speci-
fying the two interior tessellation factors. In particular, an internal factor may differ from both
of the two related boundary factors, and therefore, up to four transition regions can occur.
Subfigs. e–h show patterns for four different classes of tessellation factor configurations.4 To
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avoid visual clutter, we omitted labeling the internal factors (e: 7, 5; f: 7, 7; g: 6, 7; h: 6, 5).
Note that the quad faces in the uniform core regions are triangulated in a quasi-symmetric way
such that the diagonal edges point towards the patch center.We, however, choose the diagonals
completely uniformly because thus the core can efficiently be described by triangle strips. But
when tessellation patterns are directly generated on the fly in hardware, as will be the case with
Direct3D 11’s scheme, such considerations are of less concern.

Fractional tessellation

The required sampling density for approximating a patch usually increases or decreases when
the patch is moved relative to the camera. To allow a smooth adjustment of the tessellation
pattern satisfying the sampling requirements and hence a fine-grained continuous level-of-
detail, Moreton introduced fractional tessellation [255]. In this scheme, tessellation factors are
no longer restricted to integer values but can be real numbers. Given a boundary factor m,⌊m⌋ line segments of parameter-space length 1/m are generated along the boundary. Addition-
ally, in case m is not an integer, a segment of shortened length fract(m)/m is created. To avoid
any directional bias, in practice a symmetric pattern is constructed by bisecting the boundary
and applying the scheme to both halves with a tessellation factor of 1/2m, placing the shortened
segments towards the center of the boundary. Subfig. d shows an example.

An extended version of this fractional tessellation scheme is available in Direct3D 11. It
comes in two flavors, even and odd, denoting the parity of the number of created segments; see
Subfigs. i and j. Note that due to the symmetric splitting of the tessellation factor, this parity is
independent from the factor’s parity and can be specified freely. The even variant corresponds
to the original fractional scheme but distributes the shorter-length segments differently. More-
over, the segment lengths are now determined by blending between the two closest integer
configurations. For instance, a tessellation factor of 3.5 no longer results in a decomposition in
parameter space as 10/35+ 10/35+ 10/35+ 5/35 but as 7/24+ 7/24+ 7/24+ 3/24, term-wisely interpolating
between 1/3 + 1/3 + 1/3 + 0/3 (factor 3) and 1/4 + 1/4 + 1/4 + 1/4 (factor 4).

Fractional tessellation was devised to smoothly vary the tessellation rate without causing
popping artifacts when the rendered tessellation geometry changes. However, such artifacts
only occur if the maximum approximation error is chosen too large and thus curved surfaces
don’t appear smoothly curved. But then fractional tessellation may trade popping artifacts for
swimming artifacts. A probably better solution for such suprathreshold settings is using only
power-of-two tessellation factors and performing geomorphing.This guarantees that when fac-
tors are increased or decreased, sample points are only added or removed, respectively, but
never moved.

Note that employing fractional tessellation doesn’t make sense in our application. First, we
always aim at choosing the sampling rate high enough. Second, a fractional tessellation pattern
comprises at least as many triangles as the corresponding ordinary tessellation pattern for the
next larger integer tessellation factors. Even worse, it is more expensive to create.

For the sake of completeness, we note that non-uniform fractional tessellation [260] sub-
jects the sample points of a fractional tessellation pattern to a view-dependent reverse pro-
jection mapping in order to obtain a more uniform distribution of sample points in screen
space during rendering. However, the resulting non-uniform sample spacing in parameter

4All examples were obtained with the Direct3D 11 reference device of the November 2008 version of the
DirectX SDK [252].
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space makes it hard to ensure that the sampling guarantees a prescribed approximation er-
ror bound. Therefore, even ignoring the entailed overhead, this extension is not suitable for
our purposes.

7.3.2 Patterns for triangular domains

Similar to the situation with subdivision options, the triangular domain offers a larger variety
than the rectangular case when it comes to tessellation pattern schemes. Typically, the tessella-
tion factors along the boundaries can be chosen freely, while the single internal factor for the
uniform patch interior is implicitly set to the maximum of all three boundary factors. Fig. 7.7
depicts some example patterns for various schemes. The internal tessellation factor is labeled
in a small blue triangle if it is specified explicitly.

Subfig. a–c illustrate our own scheme. Like in the rectangular case, the pattern consists of a
uniform core and up to two transition regions at boundaries where the tessellation factors differ
from the internal factor, defined by the maximum of the three boundary factors. The uniform
part is constructed by a regular triangular tiling and comprises solely triangles equilateral in
parameter space.

By contrast, the scheme pursued by Direct3D 11 (cf. Subfigs. d–g) fills the interior by con-
centric triangles, successively decreasing the uniform tessellation factor used for each triangle
boundary by two towards the center.The boundaries of two concentric triangles are connected
by quad faces, triangulated such that the diagonal points to the patch center. Note that the tri-
angular domain is implicitly split into three sectors, as illustrated in Subfig. d. Although the
resulting tessellation patterns are highly symmetric, they entail more internal vertices and tri-
angular faces than our scheme. Consequently, more sample points must be processed when
generating the approximating tessellation, impacting performance. As an example, a uniform
tessellation with factor m results in 1/2m2 + 3/2m + 1 vertices with our scheme, whereas Di-
rect3D 11’s approach produces ⌊1/4m2⌋ more samples, namely 3/4m2 + 3/2m + 1 vertices for
even values of m and 3/4m2 + 3/2m + 3/4 if m is odd. Moreover, while reasonably shaped, the
created triangles are not equilateral as in our scheme. Finally, note that like in the rectangular
domain setting, Direct3D 11 also offers even and odd fractional tessellation schemes, shown
in Subfigs. h and i, respectively.

Subfig. j exemplifies the method of Chung and Kim [71], which is quite similar to ours,
producing the same pattern for uniform factor configurations. If the boundary factors differ,
however, they create an inner core triangle uniformly tessellated with a factor equaling the
maximum of the boundary factors minus two. This core region is then connected to all three
outer boundaries with transition regions. To obtain nicely shaped triangles at the corners of
the tessellation, i.e. in the blue and green regions in Fig. 7.7 j, edges connecting an outer corner
of the tessellation with a corner of the inner core triangle are flipped if they form the longest
edge in both of their adjacent tessellation triangles (green case). Note that this scheme yields
more triangles than ours in case of non-uniform tessellation factors.

To reuse the pattern generator for rectangular domains, Moreton [255] treats the domain
triangle as a degenerate quadwhere one edge is collapsed; see Subfigs. k and l.While simple, this
scheme imposes a predominant parameter direction (d01), causes severe oversampling along
this direction, and yields long and thin triangles near the singular boundary. Similarly, in the
corresponding fractional tessellation variant, shown in Subfig. m, the fractional tessellation
scheme for rectangles is reused. To this end, the triangular domain is decomposed into three
quadrilateral sectors.
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Figure 7.7 Various tessellation patterns for a triangular domain.
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Figure 7.8 Transition strips can be generated with a Bresenham-like algorithm [255].

Bruijns [55] presents three schemes, crafted to dynamically choose the one which generates
the least number of triangles. The first one, called fast fixed subdivision (FFS), supports only
uniformly-chosen tessellation factors and yields identical results as our approach (cf. Subfig. a).
The second scheme, termed constant maximum variable subdivision (CMVS) and depicted in
Subfig. n, essentially produces the same output as Moreton’s approach of reparameterizing the
domain triangle as a quad. However, Bruijns selects that parameter direction as predominant
whose corresponding boundary tessellation factor is the smallest one, thus keeping oversam-
pling to a minimum.The last scheme, linear maximum variable subdivision (LMVS), is similar
to ours, generating a uniform inner core trianglewith FFS and connecting it to the outer bound-
aries with transition regions; see Subfig. o. To improve the triangle shapes near the corners of
the tessellation, an additional sample (colored red) is placed halfway between each corner of
the outer triangle and the corresponding corner of the inner core triangle. If the minimum of
all boundary tessellation factors is below four, the inner core triangle vanishes. In such cases,
the domain is subjected to an internal 1-to-3 split, and for each resulting sector a triangle fan is
constructed, as shown in Subfig. p. For filling the transition regions with triangles, Bruijns uses
triangle strips (colored in light brown) and fans (darker brown). In one method, the boundary
with the smaller number of samples is connected to the central part of the other boundary by
a single triangle strip, and triangles fans are used to stitch the remaining parts of the higher-
sampled boundary to the endpoints of the lower-sampled one. Alternatively, a triangle fan is
constructed for the central part, while a strip is used at each outer part of the boundary with
the larger number of samples.

Finally, Subfig. q illustrates Kumar’s scheme [200]. First, the two boundaries with the largest
tessellation factors are determined.5 In the following, we assume these to be w = 0 and v = 0
with associated factorsm and n (corresponding to the lower and the left boundary in Subfig. q).
Conceptually, an inner core triangle uniformly tessellated with factor max{m, n} is generated
and then stretched such that each edge parallel to w = 0 is of length 1/m in parameter space
and each edge parallel to v = 0 is of length 1/n. Note that consequently, the remaining edges are
generally no longer parallel to u = 0. This core is placed such that the corner where the two
boundaries parallel to w = 0 and v = 0 meet has position (v ,w) = (1/2m, 1/2n). Subsequently,
all core faces are removed which are (at least partly) beyond the line u = 1/2min(m, n) (indicated
in red). Finally, the outer edges of the remaining core (colored yellow) are stitched to the outer
boundaries.

5Kumar actually allows not only for tessellation factors along the boundaries but also for three (possibly non-
integer) internal factors, one for each parameter direction. For simplicity, we assume that the boundary factors
coincide with the internal ones.
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(a) (b) (c)

(d) (e) (f)

Figure 7.9 Thedirect application of the stitching algorithm [255] works fine for isolated tran-
sition regions (a, d) but yields sub-optimal triangle shapes if two transition regions meet (b, e).
In these cases, better results are obtained by temporarily extending the interior core boundary
tomirror the isolated setting, running the algorithmwith thismodified input, and subsequently
collapsing the temporarily introduced line segments (c, f).

7.3.3 Transition regions

A transition region serves to link the polyline approximations of two curves possibly sampled
at different rates with a filling strip of triangles. Each segment of each polyline is connected to
a vertex of the other polyline, creating a triangle. These triangles must not overlap and ideally
should not be skinny but well shaped.

An efficient method to generate such triangles for a transition region was proposed by
Moreton [255]. It seeks to yield a fair allocation of line segments to vertices and to obtain
well-shaped triangles in parameter space by traversing the polyline segments using a state ma-
chine similar to Bresenham’s line drawing algorithm [54, 158]. As illustrated in Fig. 7.8, a state
variable Q is initialized to the difference of the two curve tessellation factorsm and n, and sub-
sequently updated. Its sign controls from which of the two polyline approximations the next
segment is picked for creating a triangle.

However, we observe that if a transition region is not isolated but meets another one at a
corner, then the resulting fill trianglesmay become badly shapedwhen the algorithm is directly
applied, as depicted in Figs. 7.9 be and 7.10 a.6 This is because in such cases the inner polyline
does not span the whole tessellation and is also not centered with respect to the outer boundary
unless a neighboring transition region abuts at each side. Our solution is to temporarily aug-
ment the inner polyline by an additional line segment at each endwhich is not on the boundary
of the tessellation because another transition region adjoins.We then launch the stitching algo-
rithm with the adjusted inner polyline as well as the original outer polyline, and subsequently
collapse the segments temporarily introduced to the inner polyline, discarding resulting zero-
area triangles. The effectiveness of this approach is demonstrated by the examples in Figs. 7.9
and 7.10. An efficient implementation is discussed in the next subsection.

7.3.4 Fast pattern generation

A main objective in devising our tessellation pattern schemes for rectangular and triangular
domainswas the ability to rapidly generate patterns for a given tessellation factor configuration.
This is crucial for our tessellation approach presented in Sec. 7.6 as it involves creating such

6Note that a similar observation was made by Chung and Kim [71]. Moreover, there are some indications that
Moreton [255] was aware of the issue, although it is not explicitly addressed.
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(a) Naive application (b) Our variant

Figure 7.10 Close-up view of the double torus model demonstrating that in case a patch’s
tessellation pattern features two adjoining transition regions (indicated by the darker shades),
the naive application of the transition region filling algorithm often yields badly shaped trian-
gles (a) in contrast to our special treatment (b).

a pattern for each patch on the fly and per frame. In the following, we provide some details
concerning our implementation, where a pattern is stored as an ordered list of sample points
and a set of triangle strips describing their topology.

Recall that in our scheme for a rectangular domain, each internal tessellation factor is cho-
sen as the minimum of the boundary factors for the same parameter direction. By contrast,
in the triangular setting, the internal factor is implicitly set to the maximum of the boundary
factors. Therefore, in both cases at most two transition regions exist. Examples of this most
general setup are shown in Fig. 7.11; note that the vertices are labeled by their indices.

First, vertices for the uniform core are created, proceeding row-wise. If transition regions
exist, subsequently samples are generated along the involved outer boundaries. These vertices
are ordered such that their indices can be derived easily and efficiently. The uniform core is
then covered by triangle strips, producing one per row. Finally, the transition regions are filled
by applying the stitching algorithm described in the previous subsection. Here, each triangle is
output as a separate triangle strip because this simplifies exactly predicting the overall storage
requirements and also avoids the control overhead of creating optimal-sized strips. Note that
the alternative of using just individual triangles throughout instead of strips usually results in
a less compact representation, since the efficiency gain for the transition regions is typically
outweighed by the storage increase for the uniform core.

Regarding the realization of the linking algorithm for the transition regions, first note that
the index increment required to proceed from one vertex of a polyline to an adjacent one is
constant for the outer boundaries. In case of a rectangular domain, it is also constant for the
internal boundaries, whereas in the triangular setting the incrementmay vary linearly. Exploit-
ing this allows efficiently determining the indices for the output triangle strips. If two abutting
transition regions exist, we initiate the stitching algorithmwith the number of segments for the
inner polyline increased by one. To efficiently handle the resulting temporary line segment and
its collapsing, we pursue a domain-specific approach.

In the triangular case, the direction along which the segments are processed is additionally
chosen to point away fromwhere the transition regionsmeet.This causes the first output trian-
gle to always be made up from the first (only virtual) inner segment because, by construction,
the modified inner segment countm is at least as large as the outer segment count n, and hence
the state variable Q is initially non-negative (m − n ≥ 0). Therefore, we only have to skip the
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Figure7.11 Example tessellation patterns fromour scheme showing the vertex ordering used
in our realization.

first produced triangle (colored blue in Fig. 7.9 f), writing no indices but updating Q, and can
then proceed normally with the stitching algorithm.

The rectangular setting ismore involved because here the outer segment count n dominates
the inner segment count m. If the processing starts from where the neighboring transition re-
gion abuts, we first generate triangles made up of segments from the outer polyline as usual
untilQ becomes non-negative.Then, the next triangle would be constructed from the virtually
introduced inner segment and is hence just skipped. Subsequently, the ordinary stitching al-
gorithm is run. Similarly, in case the processing direction points towards where the transition
regions meet, we execute the usual linking algorithm and abort it once the last non-temporary
vertex of the inner polyline has been used for the first time. A triangle is then constructed for
each remaining outer segment by connecting it to this last vertex.

7.4 Determining tessellation factors

When creating a tessellation for a curved surface patch, an appropriate sampling density has to
be determined. While this may be achieved implicitly by recursively refining an initial coarse
sampling, we now focus on the alternative of directly deriving uniform sampling rates and cor-
responding tessellation factors from the surface description. These can then be used to select
an according tessellation pattern. Note that in most cases, for each parameter direction, only
one tessellation factor valid for the whole patch is determined, setting related boundary and
internal factors to identical values. The boundary factors may later be increased to match the
corresponding factor in the tessellation of an adjacent patch. Another option is to directly de-
termine individual factors for each boundary and the patch interior, avoiding later adjustments.
This, however, can result in undersampling close to a boundary when its factor is smaller than
the related internal factor because then the maximum sample spacing in the corresponding
tessellation pattern transition region grows towards the boundary.
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To account for the current viewing setup, tessellation factors are typically calculated such
that a prescribed screen-space bound, e.g. an approximation error tolerance ε, is satisfied. The
computations usually involve some quantities derived from the surface description, like bounds
on the magnitudes of the derivatives. These quantities may be directly determined in screen
space after transforming the surface description from object space into screen space. Such an
approach is often pursued in repeated subdivision techniques to compute the degree of flatness
that guides further refinement.

Alternatively, the quantities can be derived in object space and a subsequent transform
brings them into a common space with the screen-space bound. Since the quantities are hence
view-independent, they can be precomputed for each patch, which is attractive if their calcula-
tion is comparatively expensive, as is usually the case. Note that precomputation is not possible
or reasonable if the surface description changes every frame or, like in adaptive subdivision
methods, patches are dynamically created. On the other hand, the computation in object space
typically results in more conservative estimates compared to approaches operating directly in
screen space, causing some oversampling. This is because the derived quantities provide only
condensed information about a surface and hence the effect of the current view on the surface’s
screen-space projection cannot be fully taken into account.

While the object-space quantities could be projected into screen space, usually it is easier
to transform a scalar screen-space bound into object space. Alternatively, both may bemapped
to an intermediate space. For instance, Abi-Ezzi and Shirman [2] advocate using the lighting
coordinate space [4] resulting from factoring the view-projection matrix into a rigid factor
and a sparse non-rigid factor. By carefully investigating the involved transformation matrices,
they get tight scaling factors for transforming object-space derivative bounds and screen-space
thresholds to lighting coordinates. On the downside, the approach necessitates matrix factor-
ization and matrix norm computations.

7.4.1 Bounding screen-space triangle sizes

Many approaches determine tessellation factors by computing the sampling rate that is required
to make the size of the screen-space projection of each triangle within the resulting tessellation
satisfy some bound. This heuristic criterion ensures a certain screen-space sampling density
that helps to capture shading variations, especially when using Gouraud shading and glossy
materials. On the other hand, without imposing tiny size bounds it cannot be guaranteed that
the deviation of the tessellation from the approximated surface is small enough to be invisible.
Moreover, severe oversampling may occur because essentially no difference is made whether a
surface is highly curved or completely flat.

One very simple method to derive a boundary tessellation factor, for instance pursued by
Chung and Kim [71], is to just project the corner points of the related boundary into screen
space, determine their distance in pixels, and divide this distance by some user-specified edge
length bound εl. The corresponding tessellation, however, will yield edges longer than εl pixels
in case the boundary is curved. Note that if each boundary tessellation factor depends solely
on its associated boundary and ignores the patch interior, like in this method, then internal
tessellation factors guaranteeing a sufficient sampling cannot be reasonably inferred from the
boundary factors but must be specified separately.

Better results are achieved by taking the actual shape of the boundary curve into account.
For example, Rockwood [314] suggests deriving the tessellation factor as a function of themax-
imum distance between two successive Bézier control points. Note that this distance is essen-
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tially a bound on themagnitude of the curve’s first derivative, obtained by exploiting the convex
hull property. Correspondingly, for the general setting of a curve c(t), t ∈ [0, 1], and a thresh-
old εs, Abi-Ezzi and Shirman [2] determine the tessellation factor m = ⌈1/δ⌉ using the mean
value theorem to compute the sampling step size δ such that

δ ≤ εs
maxt∈[0,1] ∥c′(t)∥

holds.However, Kumar [199] argues that themean value theorem is incorrectly applied because
c(t) is a vector-valued function and not a scalar one. He suggests employing the modified
criterion

δ ≤ εs∥⎧⎪⎩maxt∈[0,1](c′(t))x, maxt∈[0,1](c′(t))y, maxt∈[0,1](c′(t))z⎫⎪⎭T∥ (7.1)

instead.
For a Bézier patch b(u, v), the required tessellation factormu = ⌈1/δu⌉ in u parameter direc-

tion is then determined by considering all curves b[v](u) = b(u, v) in u direction and hence
ultimately by the (possibly component-wise) maximum magnitude Du of the partial deriva-
tive bu(u, v). Utilizing the convex hull property, Du can be easily bounded by the maximum
magnitude of the corresponding control points. Alternatively, one may compute the accurate
maximumDu to get a tighter bound for the step size δu [199]. Note that since such a calculation
is expensive, it is a good candidate for precomputation in object space.

7.4.2 Bounding the approximation error

However, we are in general not interested in ensuring some minimum screen-space sampling
rate but strive to generate a tessellation that well approximates a curved surface within some
controllable tolerance. Accordingly, methods that bound the approximation error are more
appropriate for determining tessellation factors.They typically yield a fine sampling in presence
of high curvature and a coarse sampling for rather flat patches.

A well-known result from approximation theory states that the deviation of a C2-contin-
uous curve c(t), t ∈ [a, b], from its endpoint-interpolating linear approximation, the linearly
parameterized line segment l(t) with l(a) = c(a) and l(b) = c(b), is bounded according
to [128]

sup
t∈[a,b]

∥c(t) − l(t)∥ ≤ 1
8(b − a)2 sup

t∈[a,b]
∥c′′(t)∥. (7.2)

Consequently, to satisfy an error tolerance ε, the sample spacing δ for a Bézier curve b(t) de-
fined on the unit interval U = [0, 1] ∋ t must be chosen such that

δ ≤ √
8ε

supt∈U∥b′′(t)∥
holds. The corresponding tessellation factor is then trivially given by m = ⌈1/δ⌉. Since the sec-
ond derivative b′′(t) is itself a Bézier curve, its norm can easily be bounded by the maximum
magnitude of its curve control points. Note the quadratic convergence, that is, doubling the
tessellation factor reduces the approximation error by a factor of four. This implies that when
zooming in to a curve, the number of samples required to maintain meeting the prescribed
error bound grows so slowly that the resulting screen-space sample spacing actually increases.
It is hence obvious that generally either over- or undersampling will occur if criteria are used
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which choose the tessellation factor such that the screen-space sampling rate is bounded in-
stead of the geometric approximation error.

A similar result exists for surfaces. Consider a C2-continuous surface s(u, v) defined on
the right domain triangle T = △(A,B,C) ∋ (u, v) with A = (u0, v0), B = (u0 + δu , v0) and
C = (u0, v0+δv), and its corner-interpolating linear approximation, the linearly parameterized
triangle l(u, v) with l(A) = s(A), l(B) = s(B) and l(C) = s(C). Then, according to Filip et
al. [128]

sup
(u,v)∈T

∥s(u, v) − l(u, v)∥ ≤ 1
8(Muuδu2 + 2Muvδuδv +Mvvδv2) (7.3)

holds,7 where

Muu = sup
(u,v)∈T

∥suu(u, v)∥, Muv = sup
(u,v)∈T

∥suv(u, v)∥, Mvv = sup
(u,v)∈T

∥svv(u, v)∥.
Applied to a tensor-product Bézier patch b(u, v), (u, v) ∈ U = [0, 1]2, this means that

a uniform tessellation with tessellation factors mu and mv in u and v direction, respectively,
sampling the patch with step sizes δu = 1/mu and δv = 1/mv at parameter points (iδu , jδv), 0 ≤
i ≤ mu, 0 ≤ j ≤ mv , keeps its maximum deviation from the patch within the tolerance ε if

Duuδu2 + 2Duvδuδv + Dvvδv2 ≤ 8ε (7.4)

is satisfied, where

Duu = sup
(u,v)∈U

∥buu(u, v)∥, Duv = sup
(u,v)∈U

∥buv(u, v)∥, Dvv = sup
(u,v)∈U

∥bvv(u, v)∥.
Each of these bounds on the second-order partial and mixed derivatives can be bounded by
the maximum magnitude of the Bézier control points of the corresponding derivative patch.

To infer concrete maximum step sizes δu and δv from (7.4), and thus ultimately derive
tessellation factorsmu andmv , Filip et al. [128] suggest the following procedure. If Duu = 0 and
Dvv > 0, i.e. the surface is linear in u direction, we set δu = 1 and hence mu = 1, and then get

δv = √
Duv
2 + 8ε Dvv − Duv

Dvv
and thus mv = ⌈ 1

δv
⌉ = ⎡⎢⎢⎢⎢⎢

√
Duv
2 + 8ε Dvv + Duv

8ε

⎤⎥⎥⎥⎥⎥.
The case Dvv = 0 and Duu > 0 is treated analogously. If Duu = Dvv = 0, we choose δu = δv and
hence obtain

mu = mv = ⌈ 1
δv

⌉ with δu = δv = √
4ε
Duv

unless Duv = 0, in which case we trivially set mu = mv = 1. Finally, if Duu > 0 and Dvv > 0, Filip
et al. fix δv = Duu/Dvv δu, yielding

δu = √
8ε Dvv

DuuDvv + 2DuuDuv + Duu
2 and mu = ⌈ 1

δu
⌉ , mv = ⌈ Dvv

Duuδu
⌉ .

7Note that the bounded approximation error is defined as the distance between a surface point s(u, v) and the
point l(u, v) on the linear approximation at the same parametric location. If instead the perpendicular distance
of the point s(u, v) to the triangle l and hence the closest point l(u′ , v′) is employed to measure deviation, tighter
bounds and thus ultimately larger step sizes are possible [378].
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Abi-Ezzi and Shirman [2] improve on that by instead choosing δv = √
Duu/Dvv δu, which mini-

mizes the term 2/δuδv , essentially corresponding to the number of triangles in the tessellation;
then

δu = √
4ε Dvv

DuuDvv +√
DuuDvv Duv

and mu = ⌈ 1
δu

⌉ , mv = ⎡⎢⎢⎢⎢⎢
√

Dvv

Duu

1
δu

⎤⎥⎥⎥⎥⎥ .
A different approach is pursued by Guthe et al. [150], who split the bivariate term from

(7.4) into two univariate ones by utilizing the inequality δuδv ≤ 1/2(δu2+δv2), and then distribute
the error tolerance ε evenly among both parameter directions, yielding

(Duu + Duv)δu2 ≤ 4ε and (Duv + Dvv)δv2 ≤ 4ε.
While simple and amenable to fast step size determination when the bounds Duu, Duv and Dvv
are precomputed, this reformulation into two independent curve-like cases generally yields
looser bounds on the maximum step sizes and results in a larger number of triangles.

In addition to controlling the maximum geometric deviation of a tessellation from the ap-
proximated surface, some applications may desire to further keep the approximation error of
the surface normal or some other smooth surface signal bounded.8 Guthe et al. [151] present
a related method that applies the same approximation-theoretic results as discussed above and
augments them by a mapping from signal space to object space to allow combination with the
geometric approximation error.

Although beyond our scope, we finally note that bounds for the geometric deviation from
a piecewise-linear approximation also exist for subdivision surfaces [403].

7.4.3 Rational Bézier patches

Rational surface patches are of high practical relevance due to their ability to describe quadrics
and surfaces of revolution, like ellipsoids and cylinders. For them, too, the condition in (7.4) is
sufficient for bounding the approximation error of a uniform tessellation. However, recall from
Sec. 6.1.1 that a second-order partial derivative of a rational Bézier patch of degree n × n has
an overall degree of 3n×3n. Consequently, deriving the bounds Duu, Duv and Dvv is expensive
and hence hampers a rapid on-the-fly computation for dynamically changing patches. While
several approaches exist to more cheaply derive bounds on the first-order partial derivatives
[169, 414, 417], second-order derivatives are largely unaddressed. But even if the maximum
magnitudes of the second-order derivatives are accurately determined, Kumar [199] notes that
due to the high degrees involved, the approximation error bound is rather loose and hence
unnecessarily large sampling rates get chosen. To alleviate oversampling, he therefore suggests
a heuristic which increases the tessellation factor obtained with a screen-space size criterion
like (7.1) by the maximum difference in partial derivative values at the resulting samples near
the patch corners, scaled by a user-defined constant.

We opt for the more robust method proposed by Zheng and Sederberg [416]. They gener-
alize the results from Sec. 7.4.2 to the rational setting, working directly on the homogeneous

8Visual artifacts due to normal deviation are typically not an issue. Note that in the work of Guthe et al. [150]
artifacts occur because the bicubic patches used for rendering are only approximations of higher-degree patches
which got derived ignoring derivative approximation errors, and because only uniform tessellation patterns are
employed and hence abutting patches may be sampled at different rates along their common boundary curve.
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representation, which is polynomial. Applied to a rational tensor-product Bézier patch of de-
gree n × n with 4D homogeneous control points bi j = (wi jpi j,wi j)T, their theorem states that
the approximation error of a uniform tessellation with factors mu = 1/δu and mv = 1/δv stays
within a tolerance ε if

Duuδu2 + 2Duvδuδv + Dvvδv2 ≤ 8ε min
0≤i , j≤n

{wi j} (7.5)

holds, where

Duu = n(n − 1) max
0≤i≤n−2
0≤ j≤n

{∥(bi+2, j − 2bi+1, j + bi , j)xyz∥ + (r − ε)∣wi+2, j − 2wi+1, j +wi , j∣},
Duv = n2 max

0≤i , j≤n−1
{∥(bi+1, j+1 − bi+1, j − bi , j+1 + bi , j)xyz∥+ (r − ε)∣wi+1, j+1 −wi+1, j −wi , j+1 +wi , j∣},

Dvv = n(n − 1) max
0≤i≤n
0≤ j≤n−2

{∥(bi , j+2 − 2bi , j+1 + bi , j)xyz∥ + (r − ε)∣wi , j+2 − 2wi , j+1 +wi , j∣}
with r = max0≤i , j≤n∥pi j∥. Note that if all weights wi j are identical, this reduces to the general
formulation from (7.4) applied to patches of degree n × n.

When an error threshold ε to be satisfied is prescribed, sampling step sizes δu and δv can
be derived from (7.5) like in Sec. 7.4.2, distinguishing four cases based on the positivity of Duu
and Dvv . The expressions for the bounds Duu, Duv and Dvv are now simple enough to allow fast
on-the-fly determination. On the other hand, they depend not only on the surface but also on
the error tolerance ε, precluding precomputation.

7.4.4 Bézier triangles

While we focused on tensor-product surfaces so far, the results from Sec. 7.4.2 can also be uti-
lized to derive appropriate tessellation factors for Bézier triangles. However, in the triangular
setting with its three barycentric domain coordinates u, v and w = 1 − u − v, we are primarily
not interested in the sampling step sizes along u and v direction but in those along any two pa-
rameter directions parallel to the domain boundaries, for instance d01 and −d20 (cf. Sec. 6.1.2).
Consequently, Duu, Duv and Dvv have to bound the related second-order directional deriva-
tives. This eventually yields two boundary tessellation factors; the internal and the remaining
third boundary factor may conservatively be set to their maximum. A minimum overall trian-
gle count could be obtained by considering not just one but all three pairs of boundary-parallel
parameter directions emanating froma commondomain corner (d01,−d20;d12,−d01;d20,−d12),
and choosing the optimal one resulting in the smallest tessellation factors.

We pursue a slightly different approach, individually deriving all three boundary tessella-
tion factors. Similar to Guthe et al. [150], we apply the inequality δuδv ≤ 1/2(δu2 + δv2) to (7.4)
and evenly distribute the error tolerance ε to get univariate inequalities; for all three pairs of
boundary-parallel parameter directions, we thus obtain(D1,1 + D1,3)δ21 ≤ 4ε, (D2,2 + D2,1)δ22 ≤ 4ε, (D3,3 + D3,2)δ23 ≤ 4ε,(D1,3 + D3,3)δ23 ≤ 4ε, (D2,1 + D1,1)δ21 ≤ 4ε, (D3,2 + D2,2)δ22 ≤ 4ε,
where for notational convenience we use subscripts 1–3 to refer to the parameter directions
d01, d12 and d20, respectively. We conservatively combine related inequalities, for instance to(D1,1 +max{D1,3,D2,1})δ21 ≤ 4ε
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for δ1, and then solve for δi , yielding the maximum sampling step sizes and the associated
tessellation factors. Note that the derivative boundsDp,q are easily obtained from themaximum
magnitudes of the related Bézier triangles’ control points, for example

D1,1 = n(n − 1) max
i+ j+k=n−2

∥bi , j+2,k − 2bi+1, j+1,k + bi+2, j,k∥ ≥ sup
u∈[0,1]

v∈[0,1−u]

∥D2
d01b(u, v)∥,

D1,3 = n(n − 1) max
i+ j+k=n−2

∥bi , j+1,k+1 − bi+1, j+1,k − bi+1, j,k+1 + bi+2, j,k∥≥ sup
u∈[0,1],v∈[0,1−u]

∥D1,1
d01 ,−d20b(u, v)∥

in case of a degree-n Bézier triangle b(u, v) with control points bi jk.

7.4.5 PN triangles

For the special setting of uniformly tessellating a PN triangle according to our tessellation pat-
tern scheme (cf. Fig. 7.7 a), we devised a simple approach for quickly determining the tessella-
tion factor [331].

First, we compute the distance di jk of each tangent control point bi jk from its corresponding
edge in the base triangle. Considering the boundary curve c1(t) = b(1 − t, t), we define an
associated distance curve

d1(t) = ∑
i+ j=3

di j0 B3i j0(1 − t, t)
with d300 = d030 = d003 = 0 for the vertex control points. For any parameter value t′ ∈ [0, 1],
d1(t′) provides an upper bound for the deviation of the curve point c1(t′) from the base trian-
gle. Eventually, however, we are interested in bounding the distance of the boundary curve from
its piecewise-linear approximation c̄1(t) obtained by sampling with a step size δ. But simply
constructing a corresponding approximation d̄1(t) of d1(t) doesn’t help because ∣d1(t)− d̄1(t)∣
may underestimate the geometric deviation if the boundary curve is non-planar or S-shaped.

Therefore, we temporarily employ a signed distance curve

s1(t) = ∑
i+ j=3

si j0 B3i j0(1 − t, t) = 3(1 − t)2t s210 + 3(1 − t)t2 s120
with ∣si j0∣ = di j0, implicitly choosing the signs of the si j0 such that the distance ∣s1(t) − s̄1(t)∣
to its piecewise-linear approximation s̄1(t) becomes maximum.This distance then provides an
estimate for the deviation of c1(t) from c̄1(t).9 Applying (7.2), we get10

sup
t∈[t0 ,t0+δ]

∣s1(t) − s̄1(t)∣ ≤ 1
8δ

2 sup
t∈[t0 ,t0+δ]

∣s′′1 (t)∣
≤ δ2 ⋅ 34 max

t∈[t0 ,t0+δ]
∣(s120 − 2s210 + s300)(1 − t) + (s030 − 2s120 + s210)t∣≤ δ2 max

t∈[0,1]
∣( 94 t − 3

2)s210 + ( 34 − 9
4 t)s120∣≤ δ2 max

t∈[0,1]
∣( 32 − 9

4 t)d210 + ( 34 − 9
4 t)d120∣≤ δ2 ⋅ 94 max{d210, d120}.

9Note that ∣s1(t)− s̄1(t)∣measures the geometric deviation in the direction perpendicular to the base triangle
edge and not perpendicular to the corresponding polyline segment of c̄1(t).
10We originally obtained this result for the special case δ = 2−ℓ by investigating the error term 4k e1(k, i),

measuring the deviation e1(k, i) = s1(k + 1, 2i + 1) − 1/2(s1(k, i) + s1(k, i + 1)) at samples s1(k, i) = s1(2−k i).
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Consequently, to keep the estimated deviation along all boundary curves below a threshold ε,
a uniform sampling step size δ may be chosen such that

9
4dmax δ

2 ≤ ε (7.6)

is satisfied, where dmax =max{d210, d120, d021, d012, d102, d201}.
Note that because of the construction of the center control point b111 according to (6.1), its

distance from the base triangle is bounded by
3
2dmax ≥ 1

4(d210 + d120 + d021 + d012 + d102 + d201) ≥ d111.

Therefore,
d(u, v) = ∑

i+ j+k=3
di jk B3i jk(u, v) ≤ dmax,

that is, dmax actually provides an upper bound for the PN triangle’s overall deviation from its
base triangle.

Moreover, similar to the curve setting above, we may utilize the signed version of d(u, v)
and apply (7.3) to get an estimate of the maximum deviation of the whole patch from its uni-
form tessellation, yielding the condition

45
4 dmax δ

2 ≤ ε

for the sampling step size δ. In our experience, however, using the larger step size implied by
(7.6) for the boundary curves works extremely well in practice.

Summing up, we hence typically proceed as follows. First, the tangent control point dis-
tances di jk and their maximum dmax are determined, possibly in a precomputation step. To
derive a uniform tessellation factor m for satisfying a given error tolerance ε, we then check
whether dmax ≤ ε. If the test passes, the base triangle constitutes a good enough approximation,
and we set m = 1. Otherwise, we solve (7.6) for δ and choose m = ⌈1/δ⌉.

Note that by design, the uniform tessellation factor can be computed rapidly from the single
quantity dmax, which itself can quickly be determined. On the other hand, recall that using
the bound (7.6) does not strictly guarantee that the approximation error is always within the
tolerance ε, but it keeps the number of tessellation triangles low. These properties make the
approach attractive for many real-time rendering applications, trading utmost visual quality
for speed and simplicity.

7.5 Rendering of refinement patterns

Once appropriate tessellation factors are determined for a curved surface, an according tessel-
lation can be generated and rendered. Typically, the tessellation follows a tessellation pattern
corresponding to the factors, specifying the sample locations and their topological connection.
Essentially two options exist for applying such a pattern:

• Either, the tessellation pattern is first explicitly generated in parameter space, thus providing
a tessellation of the unit domain, and is thenmapped onto the surface. Note that since each
created pattern only depends on the tessellation factors and not on the concrete surface,
it may be cached or even precomputed and can then be (re)used for all patches with the
same factor configuration. Lately, such generic patterns in parameter space have often been
referred to as refinement patterns.
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• Alternatively, the surface is directly sampled as indicated by the pattern, and triangles for
the resulting vertices are created.This approach essentially interleaves sample point genera-
tion and surface evaluation, andhence allows utilizing efficient computation techniques like
forward differencing in the uniformly sampled parts of the pattern. Note that the tessella-
tion pattern is employed in procedural form and not as explicit representation in parameter
space.

While our patch-parallel tessellation framework described later in Sec. 7.6 pursues the sec-
ond method, this section focuses on the first one. An early representative is the modular al-
gorithm for tessellating trimmed NURBS surfaces by Rockwood et al. [315]. After processing
the input to get Bézier patches and to simplify dealing with trimming, sampling step sizes are
determined and a corresponding tessellation is generated in parameter space. Subsequently,
the surface is evaluated at the vertex positions of this domain tessellation, and the resulting
object-space triangles are rendered. Note that the parameter-space tessellations depend on the
trimming regions and hence cannot reasonably be precomputed without knowledge of the ac-
tual surface.

By contrast, if only untrimmed Bézier patches are considered, like in our case, these tessel-
lations depend solely on the required sampling step sizes. Consequently, after discretizing the
range of step sizes to inverse integer tessellation factors, related refinement patterns may easily
be shared among several patches.

When striving to utilize graphics hardware for mapping a refinement pattern to a surface,
the evaluation at the pattern vertices may be performed in parallel, launching a single thread
for each sample. Early approaches typically address only the uniform tessellation of rectangular
domains. For instance, Bolz and Schröder [43] render a quad, providing the evenly spaced sam-
ple positions via interpolated texture coordinates, and evaluate the surface in the pixel shader.
Finally, the result is bound as vertex buffer and rendered using a precomputed index buffer
that contains the generic topology of the employed tessellation pattern. Note that the detour
over the pixel shader stage was motivated by hardware constraints, precluding direct surface
evaluation in the vertex shader.

7.5.1 GPU-basedmethods

Current GPU-based methods for rendering curved surfaces by mapping generic parameter-
space tessellation patterns to screen space now typically provide a refinement pattern as tri-
angle mesh input to the vertex stage, and execute the surface evaluation and the subsequent
transformation to clip space in a vertex shader.

Targeting only uniform tessellationswhere the same tessellation factor is used for all patches
of a model, and focusing on the triangular setting, Boubekeur and Schlick [48] generate tes-
sellation patterns in parameter space for a range of tessellation factors and store the resulting
refinement patterns in vertex and index buffers. At runtime, an appropriate pattern is rendered
for each surface patch. In the vertex shader, the provided vertex positions, which equal the(u, v) parametric coordinates of the sample points, are used to derive the actual surface points.
Note that the same approach was independently proposed by Guthe et al. [150] for the case of
a rectangular domain.

It is straightforward to extend this method to non-uniform tessellation factor configura-
tions and thus to adaptive tessellations [49, 51]. However, supporting all possible combinations
of factor values up to some maximum factor value may result in a large number of refinement
patterns, easily consuming a significant amount of memory (cf. Sec. 7.5.4). Therefore, in prac-
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tice often only dyadic tessellation factors, i.e. factors with a power-of-two value, are utilized.
Another option is to solely employ uniform refinement patterns and adapt them on the fly
in the vertex shader by collapsing vertices on the boundary to yield the desired non-uniform
tessellation [102, 375]. This semi-uniform approach is further detailed in Sec. 7.5.4.

A related method is proposed by Dyken et al. [101], who render dyadic uniform refine-
ment patterns and apply a kind of geomorphing during the surface evaluation to geometrically
achieve continuity across patches. However, since the tessellation topology itself is not modi-
fied, T-vertices and hence rendering artifacts can occur.11

Alternatively, one may refrain from trying to make adjacent patch tessellations consistent
and utilize only uniform refinement patterns. The resulting cracks are then filled by rendering
some additional geometry [150, 331].We developed such a technique for the special case of PN
triangles, which also closes gaps inherent to PN triangle meshes constructed from coarse base
meshes with corner-like features. The next subsection provides further details and presents
results.

Note that rendering refinement patterns requires a separate draw call for each patch or
at least for each employed pattern. Approaches to reduce this overhead, which is particularly
pronounced at low tessellation rates, are discussed in Secs. 7.5.3 and 7.5.4. A rather different
solution is proposed by Lorenz and Döllner [233], who specifically target applications with
small refinement levels. They store all refinement patterns as a list of individual triangles in a
pattern vertex buffer, and then employ a geometry shader to emit a refinement pattern for each
patch, copying the triangles from the pattern vertex buffer. The output, comprising a separate
refinement pattern instance per patch, is captured in a stream output buffer and subsequently
rendered with a single draw call to perform the mapping to the actual surfaces. While this ap-
proach indeed keeps the number of API invocations small, it necessitates multiple rendering
passes and a considerable amount of intermediate storage. Moreover, since patterns are out-
put as isolated triangles, interior pattern vertices are duplicated and hence redundant surface
evaluations are performed.

7.5.2 Connection patterns for dyadic tessellation of PN trianglemeshes

Thevisual smoothness of a coarse trianglemodel, especially at the silhouettes, can be improved
by replacing each flat triangle with its corresponding curved PN triangle. In the following,
we present our approach [331] for rendering such PN triangle meshes utilizing refinement
patterns. Motivated by the desire to keep the number of different patterns comparatively low,
we restrict ourselves to uniform patterns and dyadic tessellation factors.

Typically, however, the tessellation factors derived for the PN triangles of a model are not
identical, and hence there are some pairs of adjacent PN triangles which are tessellated to differ-
ent degrees andwhose commonboundary curve is thus approximated by different polylines. As
a consequence, cracks are introduced in the resulting model tessellation. Referring to Fig. 7.12,
basically two situations can be distinguished at such places of discontinuity in sampling den-
sity. Either tiny holes appear due to the cracks (a) or the refinement patterns rendered for two
adjacent PN triangles overlap slightly (b).While the first case can lead to visible artifacts as sin-
gle pixels along the common boundary curve may be omitted and reveal the background, the
second setting is usually less problematic. In particular, if the screen-space error threshold pre-
scribedwhen deriving the tessellation factors is chosen small enough, no visible discontinuities
appear at all.

11Interestingly, the authors don’t discuss this and call their tessellation watertight.



CHAPTER 7 Adaptive tessellation 141

4 2 2 4 3 2

(a) Gaps (b) Overlapping (c) Gaps and overlapping

Figure 7.12 If different tessellation factors are used for adjacent PN triangles, often cracks
appear. They result in gaps (yellow regions) and partial overlapping (brown regions).

To avoid visible gaps caused by the inconsistent tessellation, we stitch occurring cracks with
additional geometry. For each pair of adjacent PN triangles using different refinement patterns,
a general triangle strip is rendered that connects the two employed polyline approximations for
the affected common boundary curve. The yellow region in Fig. 7.12 a is an example of such
a connection strip. Note that the topology of the strip as well as the parameter-space sample
points corresponding to its vertices only depend on the two tessellation factors for the bound-
ary curve. Analogous to refinement patterns, we therefore generate generic connection patterns
for all possible factor configurations. These are then used for rendering the connection strips,
with the mapping from parameter space onto the boundary curve being performed in the ver-
tex shader.

In situations where the refinement patterns for adjacent PN triangles overlap, crack stitch-
ing results in mesh fold-overs, which could lead to visual artifacts, especially if a large screen-
space error threshold is chosen for deriving the tessellation factors. To alleviate such distur-
bances, we check for these cases and skip rendering those triangles of the connection strips
which would cause a fold-over. For reasons of simplicity, consistent numerical precision and
speed, we don’t perform the necessary tests on the CPU but render the connection patterns
with back-face culling enabled, which works fine in practice for closed models.

Note that in case the tessellation factors of two adjacent PN triangles differ by more than
a factor of two and the shared boundary curve has an S-like shape, minor imprecisions can
occur because then the two involved polyline approximations may overlap at non-vertex posi-
tions, potentially causing triangles of the connection strip to both close gaps and to introduce
additional overlap. However, thanks to our restriction to dyadic refinement patterns these sit-
uations are very rare. By contrast, if non-power-of-two tessellation factors were allowed, such
settings would be encountered quite often (cf. Fig. 7.12 c). Moreover, a much larger number of
connection patterns would have to be generated, significantly increasing the memory load.

If the coarse base mesh has not been modeled explicitly for being rendered with PN tri-
angles, it might happen that base triangles sharing a single vertex provide different normals
for this common vertex to model features like corners. In principle, such a situation could be
dealt with by using the tangent line construction detailed in Sec. 6.1.3 for deriving the tangent
control points close to this crease vertex, which, however, requires providing normal data from
the adjacent base triangles as additional input. If instead the purely local, standard PN triangle
construction is pursued, then adjacent base triangles can lead to PN triangles that don’t share a
common boundary curve. For instance, referring to Fig. 7.13 a, the common edgeAC becomes
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Figure 7.13 Adjacent base triangles with different per-vertex normals at their common edge
AC (a) can lead to holes in the resulting PN triangle mesh (b). These can be closed with con-
nection strips (c).

a boundary curve of PN triangle ABC, whereas it results in the dashed curve in case of PN
triangleDAC, i.e. a hole appears in the PN triangle mesh not present in the coarse base mesh.

Note, however, that as a side-effect of performing stitching by rendering connection strips,
such gaps inherent to the PN triangle mesh get closed (cf. Fig. 7.13 bc). Therefore, if neighbor-
ing PN triangles have different per-vertex normals specified, we render a connection pattern
even in case the involved tessellation factors are equal. Concerning the pattern’s normal field, we
adopt the heuristic of using the normals along the boundary curve of that affected PN triangle
whose base triangle’s face normal deviates less from the average face normal of the connection
strip for uniform tessellation factor 2.

Discussion

While our method is simple and fast, it suffers from several shortcomings. First, to avoid ar-
tifacts, we require the screen-space error tolerance used for deriving tessellation factors to be
chosen small enough, e.g. as half a pixel. However, this is reasonable, anyway, to ensure visual
smoothness of the silhouettes. Note that if, nevertheless, the error bound is set to permit devia-
tions of several pixels, overlapping refinement patterns may lead to visible artifacts. Moreover,
the connection patterns may become clearly visible as their normal fields stay constant in the
surface direction perpendicular to the approximated boundary curves.

Another issue is the limited support for texturing. Since the tessellation is not consistent,
artifacts may occur in regions where the two polyline approximations for a shared boundary
curve don’t abut, at least if a texture with high-frequency content is applied. In particular, severe
texture stretching may be noticeable on those connection strips which close a gap inherent to
the PN trianglemesh.This special case, however, is a direct consequence of inappropriate input
data. Also recall that in general C1 continuity is required to obtain good-looking texturing,
while PN triangles only meet with C0 continuity.

Further note that the ability to stitch holes inherent to the PN trianglemesh is not a panacea
to deal with arbitrary input data and doesn’t replace careful modeling. For instance, providing
different normals for a vertex shared by two base triangles may not only lead to gaps but to
more severe artifacts, like neighboring PN triangles which intersect.

The general approach of filling cracks with additional geometry is long known and can be
traced back at least up to Nydegger’s 1972 M.Sc. thesis [274]. By carefully restricting the al-
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lowed tessellation factors to power-of-two values and alleviating mesh fold-overs via back-face
culling, our method both successfully avoids major artifacts and is fast and simple. This is in
contrast to fat borders [20], another technique for closing gaps resulting from inconsistent tes-
sellations. Here, for each affected boundary curve approximation, a triangle strip is constructed
such that it corresponds to this polyline rendered with screen-space thickness 2ε, where ε de-
notes the error tolerance used for deriving the tessellation factors. Building and rendering these
fat borders is more expensive than our approach; moreover, they are prone to visual artifacts.

Implementation notes

In our example implementation, we use the method described in Sec. 7.4.5 to determine the
tessellation factors for the PN triangles. Assuming only static geometry, we compute the control
points as well as the quantity dmax for each PN triangle in a preprocess. At the beginning of
each frame, dmax is then projected into screen space and subsequently compared with the user-
specified screen-space error threshold ε to derive the required dyadic tessellation factor.

The restriction to power-of-two factors implies that the vertices of any refinement pattern
for a smaller tessellation factor are a real subset of the ones of the pattern for the largest fac-
tor. We exploit this hierarchical structure to keep the memory requirements low, storing only
the vertices of the most detailed pattern in a vertex buffer and providing corresponding in-
dex buffers for all refinement patterns. An analogous optimization is done for the connection
patterns.

When rendering the patterns, the vertex shader evaluates the PN triangle’s geometric com-
ponent to map the vertex to the surface, while the normal component is only computed in the
pixel shader, ensuring high visual quality.

Results

Some example scenes rendered with our method are depicted in Figs. 7.14 and 7.15. Note
that the employed triangular models were not explicitly modeled with suitability for apply-
ing the PN triangle scheme in mind. The involved triangle counts are listed in Table 7.1, and
the achieved rendering performance is shown in the “Batched rendering” columns of Table 7.2.
All results were obtained with an Intel Core 2 Quad Q9450 processor and an NVIDIAGeForce
GTX 280 graphics card at a viewport of size 1600×1200. We used a screen-space error bound
of half a pixel for the computation of the tessellation factors, and never observed any visual
artifact.

The Venus statue’s tessellation in Fig. 7.15 b exemplifies the occurrence of holes when only
uniform refinement patterns are rendered, caused either by cracks or by specifying multiple
normals at certain vertices (cf. the red-colored regions in Subfig. d, e.g. at the left arm stump).
The effectiveness of using connection patterns for closing these gaps is demonstrated in Sub-
fig. c.

Closer inspection of the data in Table 7.1 reveals that in our example scenes 7% to 30% of
all pairs of abutting PN triangles employ different refinement patterns and hence necessitate
rendering a connection pattern to stitch the cracks along their shared boundary curve. How-
ever, the drawn connection strips increase the overall number of rendered triangles by merely
4% to 13% and hence incur only a minor overhead.

Our approach essentially yields an adaptive tessellation for a model’s PN triangle mesh,
composed of uniformly tessellated PN triangles and crack-filling connection strips. To facilitate
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(a) Foot bones

(b) Bunny (c) Caesar mask (d) Double torus

Figure 7.14 Examples rendered with refinement and connection patterns. The color coding
visualizes the employed refinement patterns, with LOD value ℓ corresponding to tessellation
factor m = 2ℓ.
assessing the achieved performance, we also considered the base tessellation, where all tessel-
lation factors are set to one and whose geometry hence equals the coarse base mesh. Since the
PN triangles’ normal fields are still evaluated on a per-fragment basis, this provides an upper
bound on the attainable performance which takes shading into account. Typically, turning a
coarse geometry into a visually smooth one with our adaptive tessellation causes a slow-down
of less than 50%, which is usually highly acceptable.

On the other hand, we also performed a comparison with the scene-uniform tessellation
obtained by using the largest encountered tessellation factor for all PN triangles. Since conse-
quently only one refinement pattern is used throughout, no cracks occur and hence no con-
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(a) Adaptive tessellation (b) Without stitching (c) With stitching (d) Employed patterns

Figure 7.15 Venus statue example rendered with our method. In Subfig. d, blue regions in-
dicate refinement patterns (see Fig. 7.14 for the color key), while red parts are stitched by con-
nection patterns.

Triangle count Shared boundary
Scene Base Adaptive Connection Uniform curves

mesh tessellation strips tessellation Stitched Total

Foot bones 4,204 206,722 19,110 1,076,224 1,544 6,306
Bunny 2,000 118,818 10,675 512,000 845 3,000
Caesar mask 2,000 90,684 10,720 512,000 890 2,960
Double torus 1,536 50,976 2,016 98,304 168 2,304
Venus statue 1,418 58,816 6,887 90,752 589 2,127

Table 7.1 Tessellation statistics for the PN triangle example scenes from Figs. 7.14 and 7.15.
Note that the triangle count for adaptive tessellation includes the contribution from the con-
nection strips.

Batched rendering Immediate Draw calls (adaptive)
Scene Base Adaptive Uniform Adaptive Batched Immediate

Foot bones 973 Hz 530 Hz 214 Hz 143 Hz 9 5,748
Bunny 1,033 Hz 571 Hz 330 Hz 214 Hz 13 2,845
Caesar mask 1,293 Hz 737 Hz 372 Hz 187 Hz 8 2,890
Double torus 1,254 Hz 891 Hz 751 Hz 282 Hz 3 1,704
Venus statue 1,614 Hz 1,015 Hz 943 Hz 245 Hz 11 2,007

Table 7.2 Rendering performance for the base, the adaptive and the uniform tessellation of
the PN triangle example scenes from Figs. 7.14 and 7.15. In batched rendering all instances of
a pattern are rendered with a single draw call, whereas in immediate rendering a draw call is
issued for each patch and each connection strip.
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nection patterns need to be rendered. For the listed example scenes, our adaptive tessellation
results in 1.5 to 5.6 times fewer triangles being rendered and is about 1.1 to 2.5 times faster
than uniform tessellation.This indicates that performing an adaptive tessellation instead of the
simpler uniform one is clearly worthwhile despite the crack filling overhead.

7.5.3 Instanced rendering

When pursuing the current approach of rendering refinement patterns as geometry and per-
forming the surface evaluation in the triggered vertex shader, a practical challenge is how to
provide the patch-specific data required for surface evaluation, like control points, and how to
efficiently issue the refinement patterns at the same time.The first realizations [48, 150] but also
more recent extensions [49, 51] don’t explicitly address this issue but just process each patch in-
dividually, specifying the needed patch data as constant shader input (e.g. as uniform variables
in OpenGL) and rendering the refinement pattern as indexed triangle mesh.While simple and
easy to implement, this immediate rendering approach incurs a high API invocation overhead
as a draw call is performed for each patch. This overhead is typically only negligible in case
of very high tessellation factors but becomes clearly dominating for smaller factors, noticeably
hampering performance.

For the special setting where patches are defined by a coarse triangle mesh and themajority
of them needs no refinement, having tessellation factors of value one, Dyken et al. [101] sug-
gest first rendering all coarse triangles, degenerating those tagged for further refinement. Note
that this essentially aggregates the rendering of all patches with tessellation factors of one into
a single draw call. Subsequently, they process the remaining patches with tessellation factors
larger than one individually as described above, rendering a refinement pattern with a separate
draw call for each of them.

A better and more general solution, however, is to batch together all patches using the
same refinement pattern and employ instancing for rendering. Hence, identical draw calls are
grouped into a larger batch, which is then issued with just a single API call. Although quite
obvious,12 and early exploited by Gruen [143], only recently instanced rendering of refinement
patterns gained wide interest [102, 375].

To apply instanced rendering, all patches using the same refinement pattern have to be
identified and some mapping from the instance id to the actual patch be provided. Typically,
this is done by binding a vertex buffer with corresponding per-instance data. As this buffer
must potentially be rebuilt every frame, the stored patch-wise data should ideally have a small
memory footprint. In our implementation, we hence only write the patch id into this instance
vertex buffer. The id is then used in the shaders as an index to access other buffers storing
patch-specific data like control points.

Overall, our approach for batched rendering of refinement patterns is as follows. We first
determine the tessellation factors for all patches and build a queue for each refinement pattern,
containing the ids of all patches with the corresponding factor configuration. Subsequently, we
loop over all queues, and for each non-empty queue, we copy the ids to an instance vertex buffer
and issue an instanced draw call for the refinement pattern. As the results in Table 7.2 show,
this significantly reduces the number of draw calls compared to immediate rendering, where
each patch is treated individually. More importantly, batched rendering is significantly faster.

12When we originally implemented our scheme from Sec. 7.5.2, we intended to employ instancing. However,
back then only Direct3D but not OpenGL, which we used, exposed this feature. We thus resorted to pseudo-
instancing [412], specifying the patch data as persistent vertex attributes and issuing a draw call per patch.
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Maximum Adaptive, integer Adaptive, dyadic Uniform, integer Uniform, dyadic
tess. factor Patterns Indices Patterns Indices Patterns Indices Patterns Indices

4 64 2,028 27 774 4 60 3 42
8 512 48,696 64 5,086 8 312 4 130
16 4,096 1,153,520 125 27,770 16 1,904 5 434
32 32,768 29,034,976 216 142,902 32 13,024 6 1,554
64 262,144 790,916,032 343 725,206 64 95,680 7 5,842

Table 7.3 Number of different refinement patterns for a triangular domain and correspond-
ing overall number of indices used for specifying their topologies. Resorting to only dyadic
tessellation factors and especially using solely (adapted) uniform patterns significantly reduces
these numbers.

In our examples, where on average 33 to 49 triangles are used for the tessellation of each PN
triangle, indicating medium-sized tessellation factors, we observe frame rate improvements by
a factor of 2.7 to 4.1.

While we perform the tessellation factor computation and the grouping of patches into
batches for instanced rendering on the CPU, Dyken et al. [102] present a method where these
steps are executed on the GPU. Note that building the per-pattern queues still involves CPU
control; in particular, the number of enqueued patches must be read back to main memory.
Their results suggest that such a GPU-based approach is only reasonable if many patches are
rendered and the number of employed refinement patterns is rather small.

7.5.4 Number of refinement patterns

In general, when rendering refinement patterns, we strive to build large batches to amortize the
draw call overhead over many patches and thus keep the per-patch overhead to a minimum.
However, we have to create at least one batch for each employed refinement pattern.Therefore,
the number of batches can become rather high if the allowed tessellation factor configurations
are not restricted because the number of tessellation factor combinations grows exponentially
as a function of the maximum supported tessellation factor.

This easy explosion of the number of possible refinement patterns, especially for rectangu-
lar domains, is a more fundamental problem because the patterns need to be precomputed and
stored in vertex and index buffers. To make this more concrete, Table 7.3 lists the number of
different patterns in the triangular domain setting for several choices of the maximum tessel-
lation factor. It also includes the number of indices required to specify the topology of these
patterns, assuming our tessellation pattern scheme from Sec. 7.3.4 is used. For instance, if all
combinations of integer tessellation factors up to a maximum value of 64 are to be supported,
then 1.47 GB of 16-bit index buffer data have to be created and stored. In addition, vertex buffer
data encoding the sample points is required. Consequently, it is questionablewhether providing
patterns for all integer tessellation factor configurations is reasonable or possible in practice.

Choosing the maximum supported tessellation factor to be small is in general not a good
solution, as thismay impact visual quality, leading to large approximation errorswhen zooming
in. A better option is to restrict the tessellation factors to power-of-two values. However, since
the resulting dyadic tessellation typically has more sample points than required, this can incur
a significant evaluation overhead compared to ordinary integer tessellation. For example, 228%
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more vertices need to be processed for a triangular domain if instead of a tessellation factor of
17 the next larger dyadic factor 32 is employed.

Another alternative is to decompose each refinement pattern into patterns for the uniformly
tessellated core and the transition regions. But this leads to redundant evaluations and compli-
cates batch building. One may also consider exploiting symmetries among the patterns. Note,
however, that this requires a dynamic remapping of the parametric coordinates, for instance
swapping u and v or replacing u by 1 − u, and hence introduces some additional overhead.

Adapted uniform tessellations

An interesting option that greatly reduces the number of precomputed refinement patterns
is to use just uniform patterns and translate the sample points along the boundaries during
rendering such that they coincide with the sample points for a potentially smaller boundary-
specific tessellation factor. If this boundary factor differs from the uniform factor, some adja-
cent boundary sample points are moved to the same point, thus collapsing the connecting edge
and degenerating the related triangle. Overall, this procedure results in an adaptive tessellation
which uses the same sample points like the equivalent non-uniform pattern but features some
duplicate samples, which lead to redundant surface evaluations.

Note that the approach itself is rather long known. For instance, to close cracks between the
dyadic tessellations of two abutting patches, Sharp [355] moves each boundary vertex unique
to the finer tessellation to the closest common vertex. Nankervis [267] provides a geometry-
shader-based height field tessellation demo program where the samples along the boundaries
are smoothly morphed to the positions of the next coarser dyadic tessellation. Specifically for
tessellation via rendering of refinement patterns, the concept is applied by Tatarinov [375] as
well as by Dyken et al. [102], who call it semi-uniform adaptive tessellation.

Given dyadic boundary tessellation factors mi = 2ei , 1 ≤ i ≤ 3, and an internal factor
m0 = 2e0 for a triangular domain, we first determine the maximum tessellation factor n =
maxi{mi} = 2д. Then, a uniform refinement pattern for factor n is rendered, with the tes-
sellation being dynamically adapted to the boundary factors mi in the vertex shader before
performing the surface evaluation. More precisely, considering the boundary curve w = 0 as
example, we map a related boundary sample point’s barycentric coordinates (u, 1 − u, 0) to(σm1(u), 1 − σm1(u), 0) using the snap function [102]

σm(t) = 1
m

⎧⎪⎪⎨⎪⎪⎩
⌈mt − 1

2⌉, t < 1
2 ,⌊mt + 1

2⌋, t ≥ 1
2 .

The case distinction, which we efficiently implement according to the reformulation

σm(t) = ⌊mt + 1
2 − 2−ε−1 + 2−ε t⌋

m

with integer constant ε > д− e, e = log2m, is not strictly necessary but yields a more symmetric
pattern. This scheme essentially performs an on-the-fly subsampling of the boundary sample
points, moving dropped vertices to the closest remaining boundary vertex.

We observe, however, that this approach is not restricted to dyadic tessellations but can also
directly be applied to non-power-of-two values of mi and n. While it then generally no longer
performs subsampling, it again rounds the barycentric coordinates of an input boundary point
to those of the closest actual boundary vertex. Note that this rounding yields a fair distribution
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Figure 7.16 Direct3D 11 comes with native tessellation support, introducing three new pipe-
line stages and patch input primitive topologies (with a fixed number ofm ≤ 32 control points).
of original sample points to actual ones. It hence comes as no surprise that the resulting transi-
tion regions are essentially identical to those obtainedwith the Bresenham-like algorithm [255]
detailed in Sec. 7.3.3. Apart from the degenerate triangles, the only difference are occasionally
some flipped edges, which, however, actually improve the shapes of the triangles towards equi-
laterality in parameter space.

7.5.5 Direct hardware support

Recent AMDgraphics chips like the Xbox 360’s Xenos or the Radeon R600 and R700 [373, 374]
feature a tessellation unit that is capable of generating refinement patterns on the fly. Preceding
the vertex shader stage, it is invoked by rendering for each patch an input primitive of the same
topology as the patch’s domain and additionally providing tessellation factors. Each generated
tessellation vertex has its parametric sample position as attribute but also the input data for all
vertices of the rendered primitive. The tessellator supports lines, triangles and quads as input,
and can perform fractional tessellation.

Compared to ordinary rendering of refinement patterns, where a pattern’s triangle mesh
is explicitly drawn, the tessellator-based approach has several advantages. It admits optimal
batching, requiring only a single draw call for the whole model instead of one per employed
refinement pattern. The dynamic pattern generation in the tessellation stage also avoids the
explicit storage of all supported refinement patterns in vertex and index buffers. It is hence not
necessary to restrict the allowed tessellation factor combinations to keep the overall number of
patterns low. Moreover, it saves both memory bandwidth and space.

Direct3D 11

Currently, hardware-based tessellation is hardly used in practice (except on the Xbox 360),
not least because for some reason AMD didn’t make any API for utilizing the tessellator in
their PC graphics cards publicly available until recently. However, this situation will probably
change significantly once graphics hardware for the upcoming Direct3D 11 [252] is available.
Recognizing the importance of curved surfaces and real displacement mapping for high visual
quality, Direct3D 11 features native support for tessellation. Most notably, it introduces three
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new related pipeline stages: a fixed-function tessellator and the programmable hull and domain
shader stages (see Fig. 7.16). These provide a general tool and framework to efficiently and
directly perform tasks involved in the tessellation of curved surfaces, like transforming control
points, computing tessellation factors, and providing control points for surface evaluation.

In addition to points, lines, triangles, and their adjacency-augmented versions, new in-
put primitive topologies are introduced for patches with a fixed number m of control points
(1 ≤ m ≤ 32). That is, m input vertices form a patch primitive with corresponding control
points. These can then be transformed individually in the vertex shader, and are subsequently
input as an array to the hull shader stage.This stage serves to determine tessellation factors and
to transform the input patch into a different representation which simplifies surface evalua-
tion, yielding an output patch with n control points. For instance, when a base mesh facet of a
Catmull-Clark subdivision surface along with its one-ring neighborhood constitutes an input
patch, it may be converted into an approximating bicubic Bézier patch (cf. Sec. 6.3.2) as this is
far easier to process.

The hull shader stage actually consists of two parts, which operate at different granularities.
For each of the n output patch control points, one instance of the main hull shader is executed,
computing the new control point from the provided input patch control points. Moreover, a
patch constant function is run for each patch. Having access to the control points of both the
input and the output patch, this function serves to calculate and output the boundary and
internal tessellation factors. It may also output further patch-specific data, like color or, in case
of a PN triangle, the normal field control points.

The tessellator supports linear, triangular and rectangular unit domains, as well as integer
and fractional (even and odd) tessellation schemes (cf. Sec. 7.3). Given the tessellation factors,
which may not exceed a value of 64, it generates an according tessellation of the specified unit
domain, i.e. it essentially emits a refinement pattern.

Subsequently, a domain shader instance is launched for each sample point of the output
tessellation, performing the actual surface evaluation. Note that the patch control points as
well as the patch constant data output by the hull shader stage are readily available as shader
input. Unlike the situation when the surface evaluation is performed in the vertex shader, it is
hence not necessary to explicitly (re)fetch this data from a buffer or texture for each tessellation
vertex.

7.6 Patch-parallel on-the-fly tessellation

The approach of rendering refinement patterns performs sample point generation and surface
evaluation in two distinct steps, first creating a tessellation pattern in parameter space, render-
ing it, and thenmapping it onto the surface in the vertex shader. By contrast, it is also possible to
directly create the surface points when applying a tessellation pattern, immediately evaluating
the surface at the current sample position before producing the next sample.

Note that such amerging and interleaving of parameter-space sample point generation and
surface evaluation affects the options for parallelization. Since sample generation is typically a
sequential process, while the sampling of each surface patch depends only on the patch itself
and is guided by its local tessellation factors, the most adequate unit of parallelism for this step
is an individual patch. Consequently, the direct approach which immediately evaluates the sur-
facemay be executed patch-parallelly. In the refinement patternmethod, on the other hand, the
surface evaluation step has a mesh of individual samples as input and is hence naturally per-
formed sample-parallelly, launching a vertex shader instance for each pattern vertex. However,
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both the up-front generation of all sample points and especially their independent treatment
make it hard to exploit inter-sample coherence, caused, for instance, by uniform spacing and
accessing the same patch control points. By contrast, such optimizations are trivially possible
when pursuing the patch-parallel direct approach.

Concerning GPU utilization, the geometry shader stage with its amplification capability
could be employed to realize the patch-wise processing, directly creating and outputting the
surface tessellation using one shader instance for each input patch. However, such an imple-
mentation approach doesn’t seem worthwhile due to several severe restrictions faced. For in-
stance, the geometry shader’s output is basically a vertex list with triangle strip connectivity,
requiring interior vertices (with all their attributes) to be emitted at least twice. Also, a geom-
etry shader can typically output at most 1024 32-bit floating-point values per input primitive,
limiting the maximum tessellation factors, e.g. to 12 for a triangular domain if just positions
and normals are emitted. Even worse, in practice, the shader output must be restricted to far
less than the possible 1024 values to avoid severe performance drops. Although this limitation
may be alleviated by a multi-pass approach, overall performance will be negatively affected by
the overhead entailed. Furthermore, available performance data for approaches employing a
geometry shader for outputting a tessellation pattern [102, 233] suggest that even in case of
small tessellation factors, rendering refinement patterns performs significantly better.

A better alternative is to use a compute API like NVIDIA’s CUDA [273], which offers more
flexibility and explicit control, and permits output of variable and almost unbounded size per
thread via its scatter memory write capability. Utilizing CUDA, we developed a related frame-
work for adaptive tessellation, called CudaTess [334, 337]. It runs all major steps, like deriving
consistent tessellation factors, determining and evaluating surface sample points, and creating
the tessellation topology, completely on the GPU. In particular, we efficiently construct tessel-
lation patterns on the fly, readily employing patch-scale optimization techniques like forward
differencing [390], which are not applicable in vertex-parallel settings.

After giving an overview of our generic framework in the next subsection, we demonstrate
its potential by applying it to two concrete examples, bicubic rational Bézier patches (Sec. 7.6.2)
and PN triangles (Sec. 7.6.3). In both cases, real-time performance is achieved even for large
collections of surface patches. Subsequently, we discuss strengths and limitations and provide
a comparison with the competing approach of rendering refinement patterns.

7.6.1 CudaTess framework for adaptive tessellation

Although we focus on rendering curved surfaces, our CUDA-based CudaTess framework es-
sentially supports arbitrary surface primitives which are parameterized and can be evaluated
directly at any parametric sample location. It adaptively tessellates all surface primitive in-
stances in a scene, conveniently referred to as patches, in parallel and outputs the resulting
triangle meshes into vertex and index buffers for rendering. While the general approach out-
lined in Fig. 7.17 is the same for all kinds of surface primitives, the actual implementation is
usually specific to each kind of primitive.

In the first stage, the tessellation factors are determined using criteria like those covered
in Sec. 7.4. Depending on the adopted criterion, the computation is performed on the level of
either patches, (patch) edges and boundary curves, or (basemesh) vertices13. Each such element

13For instance, onemay derive a per-vertex factor as a function of camera distance, and later—during the actual
tessellation generation—choose each boundary tessellation factor as themaximumof the factors of the boundary’s
two endpoints.
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Figure 7.17 Overview of the CudaTess framework for adaptive tessellation.

is usually treated independently of the other elements in a separate thread. It is also possible to
perform view-frustum or back-face culling at this stage if patches serve as elements; affected
patches can be flagged by setting their tessellation factors to zero.

Recall that to avoid any cracks in the tessellation, boundary curves shared by multiple
patches must be sampled consistently. Therefore, we adapt the elements’ tessellation factors
appropriately in the next step using both neighborhood information provided by the appli-
cation and the original element tessellation factors from the first stage. Note that such factor
modifications are usually only required if the elements are patches.

Once the final tessellation factors have been computed, the actual tessellation of each patch
can be carried out. Processing all patches in parallel, we ultimately generate a vertex list of
the sampled surface points and a corresponding index list describing the topology for each
patch. These variable-sized lists are stored contiguously in one vertex and one index buffer,
respectively. To directly populate these buffers, we first derive according optimal-sized slots.
Based on the tessellation factors, the number of vertices and the number of indices required
for the tessellation of each patch are computed and stored in two arrays. Subsequently, we run
an exclusive parallel scan14 [35, 350] on these arrays to obtain the slot offsets within the vertex
and the index buffer for the vertex and index data of each patch. To get the required total buffer
sizes, we pad the two input arrays with a zero and then read back the last entry of the scan
results. If necessary, the vertex and index buffer are resized appropriately.

After that, a patch’s surface is directly evaluated at sample points generated on the fly ac-

14An exclusive scan computes for each element ak of a list a1 , a2 , . . . , an the sum ∑k−1
i=1 ai of all elements pre-

ceding it, yielding the prefix sum 0, a1 , a1 + a2 , . . . , a1 + a2 +⋯+ an−1.
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cording to the tessellation pattern implied by the tessellation factors. The resulting vertices are
stored sequentially in the patch’s slot within the vertex buffer (mapped into global memory).
Note that for several kinds of surface primitives, it is advantageous to employ more than one
thread per patch for surface evaluation, e.g. one per xyz component (k = 3 threads). In partic-
ular, loading control points to fast shared memory becomes effective, the register count stays
lower (enabling surfaces of rather high degrees) and memory writes are more coherent within
a warp. Finally, the index buffer data is written for each patch, thus creating the topology of its
tessellation.

The resulting buffers can then be used directly for rendering. Usually, the vertex data fea-
tures an object id, which allows selecting object-local shading options analogous to instanced
rendering. Note that in case ofmulti-pass rendering, the buffer data can readily be reused with-
out necessitating reevaluation of the patch surfaces.

Since an explicit representation of the tessellation result is available, it is also possible to
post-process it before rendering. For instance, assume only dyadic tessellations are created and
geomorphing is desired. Then, the surface evaluation may initially be done completely at the
finest involved tessellation level. Only in a post-process on the vertex buffer, the vertices to
be morphed are adapted.They easily get their coarser-level positions by interpolating between
their adjacent vertices, which can readily be accessed, thus avoidingmany redundant computa-
tions. As another example, recall that even in case control points and sampling parameters are
consistent among patches, the numerical results may slightly differ if the involved parameteri-
zation directions differ. But with all tessellation vertices at hand, it is possible to use neighbor-
hood information to copy generated vertex position data for boundary curves across adjacent
patches in a post-process, ensuring absolute crack-freeness irrespective of numerical inaccu-
racies.

To providemore insight into the actual realization aswell as the flexibility of our framework,
the following two subsections describe two concrete examples.These are chosen to often differ
significantly in the single steps.

7.6.2 Example: bicubic rational Bézier patches

As first example, we consider bicubic rational tensor-product Bézier patches (cf. Sec. 6.1.1).
An overview of our related CudaTess implementation is shown in Fig. 7.18. The application-
provided input comprises the control points of all patches in the scene packed contiguously in
an array, as well as adjacency data, storing for each boundary curve the abutting patch’s id. We
first derive a bounding box for each patch’s control points and perform view-frustum culling.
If a patch doesn’t get culled, tessellation factors in u and v direction are computed. Taking
neighborhood information into account, we subsequently derive consistent tessellation factors
for the four boundary curves of each patch. Based on these factors, patch-wise vertex and index
counts are determined, and then buffer offsets are derived. Finally, the actual tessellation is
performed by generating vertex and index buffer data.

Regarding the computation of tessellation factors, we employ the deviation-based method
detailed in Sec. 7.4.3. For each patch, we therefore first derive the object-space error toler-
ance ε from a user-specified screen-space error bound and then determine the quantities r,
min0≤i , j≤3{wi j}, Duu, Duv and Dvv . Recall that the last three of them depend on ε and hence
cannot be precomputed. Next, we derive the sampling step sizes δu and δv and compute the
corresponding internal tessellation factors. For each patch, we store one tessellation factor per
boundary curve, initialized to the associated internal factor.



154 7.6 Patch-parallel on-the-fly tessellation

Adjacency information
(4 patch ids per patch)

Control points
for Bézier patches

Data provided by the application
Resides in global memory

Arrays in global memory for temporary data

OpenGL buffer objects for rendering
Mapped into global memory

Vertex
buffer

Index
buffer

View-frustum
culling

Derive error
bound

Derive tessellation
factors

ε

Determine
vertex buffer

data

CUDPP
exclusive scan

(multiple kernels)

Determine
index buffer

data

Derive consistent
tessellation factors

Determine
required number

of vertices
and indices

Object id
(identifies e.g. material)

Patch-local
tessellation

factors

Final, consistent
tessellation

factors

Vertex
counts

Index
counts

Vertex buffer
offsets

Index buffer
offsets

CUDA kernel Read as textureRead from global memory Write into global memory Read back to main memory

Adapt buffer sizes
if necessary

Read back last element
to get total buffer sizes

Figure 7.18 Realization of the CudaTess framework for bicubic rational Bézier patches.

To avoid cracks among two adjacent patches, we make the involved factors for the shared
boundary consistent in the next step, assigning their maximum value to them. As a conse-
quence, within each patch theminimumof two opposing boundaries’ factors provides an upper
bound on the corresponding internal factor. Note that if both boundary factors get increased
during the adaptation step, this bound is larger than the originally determined internal factor.
Picking just the boundary factors’ minimum as internal factor may hence result in oversam-
pling. But since, on the other hand, this choice guarantees that at most two transition regions
can occur, thus keeping the tessellation pattern simple, we adopt it, nevertheless.

The tessellation created follows our scheme from Sec. 7.3.4. Pursuing the approach de-
scribed there, the topology is produced in a single thread for each patch, and output as triangle
strips separated by a special strip restart index. Note, however, that for simplicity we don’t per-
form the mentioned shape-improving modification for two adjoining transition strips.

The vertex data generation for each patch is distributed across four consecutive threads, one
for each component (x, y, z, w). Note that a patch’s threads belong to the same warp and hence
run in lockstep and can easily communicate via shared memory. First, the control points are
collectively loaded into sharedmemory.Then, vertex data is successively determined according
to the tessellation pattern implied by the tessellation factors, and written to the vertex buffer.
Each thread first evaluates its component of b(u, v), bu(u, v) and bv(u, v). Then, a patch’s first
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(a) Tea table (b) Spheres

(c) Killeroo (d) Killeroo herd

Figure 7.19 Example scenes composed of bicubic rational Bézier patches, adaptively tessel-
lated with CudaTess.

three threads compute the position p(u, v) and normal n(u, v), with required quantities like(b(u, v))w being exchanged via shared memory. In addition, for each vertex, we emit (u, v)
coordinates and an object id obtained from a texture.

Forward differencing

Thanks to performing surface evaluation patch-wise and thus processing a single patch’s ver-
tices sequentially instead of in parallel, we are able to employ techniques which reuse results
from computations carried out for previous vertices. We exemplarily adopted forward differ-
encing [390], which reduces the evaluation of b(u, v), bu(u, v) and bv(u, v) to a small number
of additions for all vertices with the same v (or u) coordinate but the first.

More generally, when evaluating a cubic function f (t) at evenly spaced sample points ti =
t0 + iΔt, the forward difference

Δ1 f (t) = f (t + Δt) − f (t)
between two adjacent sample values varies quadratically. Applied iteratively, the difference

Δ2 f (t) = Δ1 f (t + Δt) − Δ1 f (t)
changes linearly, while the difference

Δ3 f (t) = Δ2 f (t + Δt) − Δ2 f (t)
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Figure 7.20 Close-up view of the spheres scene from Fig. 7.19 b. The top part reveals the
adaptive tessellation, coloring triangles originating from the same patch identically.The result-
ing visually smooth rendering result is shown in the bottom part.

is constant.Therefore, given values f (tk), Δ1 f (tk), Δ2 f (tk), Δ3 f (tk) for some sample point tk,
the corresponding values for the successive sample tk+1 = tk + Δt can easily and efficiently be
evaluated by just three additions:

f (tk+1) = f (tk) + Δ1 f (tk),
Δ1 f (tk+1) = Δ1 f (tk) + Δ2 f (tk),
Δ2 f (tk+1) = Δ2 f (tk) + Δ3 f (tk),
Δ3 f (tk+1) = Δ3 f (tk).

In case of a cubic Bézier curve b(t) with control points bi and the initial sample point t0 = 0,
the start-up values are directly calculated as

b(t0) = b0,
Δ1b(t0) = Δt3 (b3 − 3b2 + 3b1 − b0) + 3Δt2 (b2 − 2b1 + b0) + 3Δt (b1 − b0),
Δ2b(t0) = 6Δt3 (b3 − 3b2 + 3b1 − b0) + 6Δt2 (b2 − 2b1 + b0),
Δ3b(t0) = 6Δt3 (b3 − 3b2 + 3b1 − b0),

ideally reusing common expressions.
Note that since computations are performed in finite precision, resulting numerical errors

may get accumulated by the involved successive addition. At extremely large tessellation fac-
tors, using a single forward differencing sequence to produce the surface samples for a complete
isocurve may hence not be accurate enough. However, in such cases, we may easily restart for-
ward differencing every, say, 64 samples, and still achieve a huge saving in arithmetic operations
compared to independently evaluating the surface at each sample position.

Results

Weapplied our implementation to several example scenes; someof those are shown in Figs. 7.19
and 7.20. The related tessellations produced at a viewport of 1024×768 and for a prescribed
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Scene Fig. Patches Triangles Vertices Indices

Tea table 7.19 a 332 41,372 25,798 55,316
Killeroo 7.19 c 11,532 100,930 110,515 213,709
Killeroo herd 7.19 d 92,256 345,751 514,753 827,389
Spheres 7.19 b 32,000 402,000 393,600 675,600
Spheres (close-up) 7.20 32,000 272,301 216,925 391,401

Table 7.4 Statistics for the rational Bézier patch example scenes, showing the geometric com-
plexity of the adaptive tessellations created with CudaTess.

Scene Tea table Killeroo Killeroo Spheres Spheres
herd (close-up)

Adaptive tessellation 207 Hz 156 Hz 48 Hz 98 Hz 93 Hz
~ with forward differencing 261 Hz 194 Hz 63 Hz 109 Hz 123 Hz
Only shading (reusing buffer data) 758 Hz 706 Hz 366 Hz 362 Hz 320 Hz

Tessellation factors 0.39 ms 0.82 ms 4.18 ms 1.62 ms 1.04 ms
Final factors & buffer offsets 0.09 ms 0.16 ms 0.42 ms 0.20 ms 0.19 ms
Vertex buffer data update 2.40 ms 3.32 ms 12.22 ms 4.54 ms 5.54 ms
~ with forward differencing 1.40 ms 2.04 ms 7.38 ms 3.54 ms 2.92 ms
Index buffer data update 0.56 ms 0.61 ms 1.19 ms 0.96 ms 0.77 ms

Table 7.5 Rendering performance and tessellation time break-down for the adaptive tessel-
lations created with CudaTess for the rational Bézier patch example scenes.

screen-space error bound of 0.5 pixels are quantified in Table 7.4. Note that in case of the close-
up view of the spheres scene (Fig. 7.20), only those patches get actually tessellated which pass
the view-frustum test.

Corresponding performance data obtained on an Intel Pentium IV 3GHzwith anNVIDIA
GeForce 8800 GTS (G80) graphics card is listed in Table 7.5. Even for large numbers of patches
to tessellate, we attain real-time frame rates. Recall that the adaptive tessellation is generated
from scratch each frame, requiring only the patches’ control points and their neighborhood
relationships as input. Consequently, both the view point and the patch control points can be
freely animated without negatively affecting the tessellation performance. Since CudaTess out-
puts a vertex buffer and an index buffer, the data can be reused formulti-pass renderingwithout
necessitating any recomputations, enabling even higher frame rates. Note that we employ the
Oren-Nayar reflectance model [279] for shading.

As the time break-down shows, generating the vertex data and hence evaluating the surface
is the most dominating part. Even if all tessellation factors are low, like in the spheres scene,
this costly computation can be sped up significantly via forward differencing, underlining the
optimizational potential and advantage of a patch-parallel approach. In scenes with a large
number of visible patches, like the Killeroo herd scene, determining tessellation factors also
consumes a significant share of time, mainly because of having to compute the bounds Duu,
Duv and Dvv . It is hence beneficial that this time-demanding stage is executed well-parallelized
on the GPU by CudaTess.
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(b) Elephant (d) Model zoo

(a) Double torus (c) Star field (e) Star field (close-up)

Figure 7.21 Example scenes described by base triangle meshes, adaptively refined according
to the PN triangle scheme with CudaTess.

7.6.3 Example: PN triangles

For our second example, we applied the CudaTess framework to PN triangles (see Sec. 6.1.3). A
collection of coarse base triangle meshes as well as according neighborhood data for the faces
is provided as input. For each corresponding PN triangle, we first derive the control points bi jk
as well as their bounding box and test it against the view frustum. If the patch is potentially
visible, we further determine its normal field control points ni jk and store them along with the
bi jk for the vertex data generation stage, before finally computing the three boundary tessella-
tion factors. Next, we utilize adjacency information for the input triangles to make the factors
consistent across patches. After determining the number of vertices and indices required for
tessellating each PN triangle, buffer offsets are computed. In a last step, the actual vertex and
index buffer data is generated, yielding the final tessellation.

To obtain appropriate tessellation factors guaranteeing a prescribed maximum geometric
approximation error, we pursue the approach detailed in Sec. 7.4.4. For each PN trianglewe first
derive the boundsDp,q on its second-order directional derivatives required for determining the
sampling step sizes. In principle, they can be precomputed if the coarse base triangles are only
subjected to rigid transformations. Subsequently, we calculate the object-space error threshold
ε corresponding to a user-specified screen-space error bound, and derive the three step sizes δ1,
δ2 and δ3 for the parameter directions d01, d12 and d20 such that the error tolerance is satisfied.
From these the related boundary tessellation factors are determined and stored. Similar to the
rational Bézier patch realization, we obtain consistent tessellation factors among neighboring
PN triangles in the next framework stage by setting related factors of two abutting patches to
their maximum.
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Figure 7.22 A close-up view of the double torus from Fig. 7.21 a.

A PN triangle’s tessellation adheres to our pattern scheme from Sec. 7.3.4 and is gener-
ated according to the method detailed there. We distribute the vertex data generation for each
patch across three consecutive threads, one for each component. At first, the control points
corresponding to the vertex positions and normals of the underlying coarse triangle are collec-
tively loaded to shared memory. If all tessellation factors equal one, the coarse triangle is not
refined and we just output the corresponding vertex data. Otherwise, the remaining control
points are brought into shared memory and vertex data is successively computed according to
the tessellation pattern and written to the mapped vertex buffer. In addition to evaluating the
position b(u, v) and the normal n(u, v), we also output (u, v) coordinates and an object id
fetched from a texture.

Concerning thread assignment, we skip every 16th thread and leave it idle, such that the
three threads of a patch all belong to the same warp. Despite this underutilization, a higher
performance is typically achieved compared to other options like choosing the block size to be
a multiple of three and especially to using just one thread per patch.

Results

Some example scenes on which we tested our realization are depicted in Figs. 7.21 and 7.22.
They cover a wide range of both coarse triangle counts and generated tessellation triangle
counts, as shown in Table 7.6. Note that we employed the same configuration as for the ra-
tional Bézier patch results.

The performance figures listed in Table 7.7 document that even large tessellation loads can
be coped with in real time. Since both the PN triangles’ control points as well as the adaptive
tessellation are derived anew each frame, animations are freely supported. Further recall that
the tessellation may be reused, for instance in multi-pass rendering, achieving significantly
higher frame rates.

Like in the rational Bézier patch case, computing the vertex data proves to be the most
time-consuming part.The kernel invoked for deriving tessellation factors, which involves com-
puting PN triangle control points, bounding box determination, culling, and calculation of the
bounds on the second-order directional derivatives, also takes a considerable amount of time.
However, it can be stream-lined in case of static scenes by precomputing the control points,
their bounding box and the derivative bounds. Especially for complex scenes like the model
zoo, this optimization yields a measurable speed-up.
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Scene Fig. Base triangles Triangles Vertices Indices

Double torus 7.21 a 1,536 15,320 16,048 43,328
Elephant 7.21 b 21,540 79,208 116,399 257,894
Star field 7.21 c 41,496 1,050,688 864,928 2,547,040
Star field (close-up) 7.21 e 41,496 379,982 249,385 692,306
Model zoo 7.21 d 80,578 160,200 311,469 548,730

Table 7.6 Statistics for the PN triangle example scenes, showing the geometric complexity of
the adaptive tessellations created with CudaTess.

Scene Double Elephant Star field Star field Model zoo
torus (close-up)

Adaptive tessellation 408 Hz 230 Hz 60 Hz 118 Hz 109 Hz
~ using precomputed data 409 Hz 259 Hz 64 Hz 122 Hz 135 Hz
Only shading (reusing buffer data) 1,413 Hz 1,076 Hz 186 Hz 301 Hz 524 Hz

Tessellation factors 0.39 ms 0.91 ms 1.41 ms 0.75 ms 2.42 ms
~ using precomputed data 0.35 ms 0.43 ms 0.47 ms 0.45 ms 0.65 ms
Final factors & buffer offsets 0.21 ms 0.26 ms 0.33 ms 0.30 ms 0.50 ms
Vertex buffer data update 0.60 ms 1.49 ms 6.81 ms 2.84 ms 3.33 ms
Index buffer data update 0.48 ms 0.68 ms 2.57 ms 1.11 ms 0.93 ms

Table 7.7 Rendering performance and tessellation time break-down for the adaptive tessel-
lations created with CudaTess for the PN triangle example scenes.

7.6.4 Discussion

OurCudaTess frameworknot only constitutes a novel approach for efficiently performing adap-
tive tessellation, but, to the best of our knowledge, is also the first generic method which per-
forms all major steps completely on the GPU without relying on dedicated hardware support.
In particular, we offer a CUDA-based solution for the efficient and purely GPU-based dynamic
generation of potentially non-uniform geometry that requires no CPU assistance except in-
voking a few kernels. Compared to the alternative of utilizing geometry shaders, which don’t
support outputting indexed primitives and hence vertex reuse and which also impose an upper
limit on the number of output primitives, our approach to GPU-guided geometry generation
provides significantlymore flexibility while at the same time typically being considerably faster.
Therefore, we reckon that our method is of more general interest than just for tessellation pur-
poses.

On the other hand, our approach suffers from some limitations. While adopting a patch
as unit of parallelism is crucial for efficient GPU-guided generation of varying amounts of ge-
ometry and enables acceleration techniques like forward differencing, it may prevent utmost
utilization of the GPU’s processors. First, since each patch is processed by one single thread (or
a small number of threads), the overall number of patches must be reasonably high to not leave
processors completely idle. Nevertheless, as the tea table scene demonstrates (cf. Tables 7.4
and 7.5), even smaller patch counts with high tessellation rates are handled very well. Second,
threads within a warp may diverge and finish at different times if the tessellation patterns of
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the warp’s patches differ, which impacts the effective parallelism. However, even when manu-
ally imposing a kind of worst-case workload, we only observed a reasonably low reduction in
throughput compared to a best case for SIMD parallelism.

Since CudaTess requires the tessellation to be stored in a vertex and an index buffer, it may
consume a noticeable amount of memory. Especially in case of a large number of patches being
excessively tessellated, one hence may consider applying CudaTess sequentially to subsets of
the scene. On the other hand, it is the explicit availability of the tessellation result that enables
post-processing of the vertex data as well as fast buffer reuse for multi-pass rendering.

Compared to (re)using previously computed patterns (like when rendering refinement pat-
terns), CudaTess exhibits a creation overhead becausewe generate a tessellation pattern for each
patch on the fly. However, such a dynamic creation naturally supports essentially arbitrary tes-
sellation factor configurations and thus prevents having to put restrictions on them, otherwise
necessitated to enable precomputation and to cope with combinatorial explosion. As a con-
sequence, potentially fewer samples may be processed, since, for instance, forcing each factor
to the next larger dyadic value is not necessary. Furthermore, computing the surface vertices
making up the tessellation is typically faster when interleaving sample generation and surface
evaluation. Especially techniques made possible by our patch-parallel approach, like caching
control points in shared memory or forward differencing, can make a significant impact on
performance. Therefore, despite creating a custom tessellation pattern for each patch, Cuda-
Tess is usually faster in total, nevertheless, if the surface evaluation is rather expensive. See the
next subsection for a concrete comparison with rendering refinement patterns.

Note that it is possible to employ the CudaTess framework for creating a vertex and an as-
sociated index buffer containing a refinement pattern instance for each patch, render all these
patterns with a single draw call, and perform the surface evaluation only in the vertex shader.
However, unlike the normal CudaTess procedure, such a hybrid approach is not able to amor-
tize the pattern creation overhead by a more efficient surface evaluation. By contrast, because
the per-sample workload within CudaTess reduces to progressing the current parametric po-
sition and hence only a low arithmetic intensity is available to hide the latency of the involved
non-coalesced memory writes, the pattern generation overhead is even accentuated.

It is interesting to observe that the upcoming Direct3D 11’s tessellation support bears some
resemblance with the CudaTess pipeline and also offers some of its acceleration capabilities.
For instance, Direct3D 11 organizes determining tessellation factors, creating an according tes-
sellation pattern, and evaluating the surface as successive steps within a single rendering pass.
However, unlike in CudaTess, no stage formaking factors consistent across patches is provided.
It hence becomes necessary to derive separate tessellation factors for the boundaries and the
patch interior in the first place. But recall from Sec. 7.4 that this may not guarantee a sufficient
sampling close to a boundary whose factor is smaller than the related internal factor. Also note
that while customizing stages as well as adding further stages is straightforward in CudaTess,
Direct3D 11’s according flexibility is rather limited because it fixes the single steps and their
properties to enable and facilitate direct hardware implementation. As another characteristic,
Direct3D 11 provides the patch control points as input both for the tessellation factor deter-
mination and for the vertex-parallel surface evaluation in the domain shader. Like in Cuda-
Tess, control points hence don’t have to be fetched anew for each surface sample. On the other
hand, further patch-scale optimizations like forward differencing are not possible because each
surface point is processed independently. Finally, note that it is unclear how efficient the first
hardware realizations of the complete Direct3D 11 pipeline with enabled tessellation support
will be.
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Figure7.23 Rendering performance comparison between (batched) rendering of refinement
patterns and CudaTess for the spheres scene (Fig. 7.19 b). All patches are uniformly tessellated
according to the selected global tessellation factor.

Even if they met all expectations right away, we reckon that the flexibility of the Cuda-
Tess framework along with the opportunities arising from the pursued patch-parallel approach
make our method still relevant and competitive. In particular, adapting CudaTess to the com-
pute shader technology of Direct3D 11 enables a seamless integration into the standard graph-
ics pipeline. We further believe that our approach is well suited for future hardware architec-
tures like Intel’s Larrabee [349] with their increased flexibility and programmability as well as
their tendency to omit special-purpose units like a rasterizer or a tessellator and realize their
functionality in software.

7.6.5 Comparison to rendering refinement patterns

We close this chapter as well as the part on (real-time) rendering of curved surfaces with a
comparison between the two currently most promising approaches, our patch-parallel Cuda-
Tess framework and the rendering of refinement pattern. All results were obtained with the
same configuration as before in this section (Pentium IV 3 GHz, GeForce 8800 GTS (G80),
1024×768 viewport, 0.5 pixels error tolerance).

As first scenario, we pick the spheres scene and select identical tessellation factors for all
patches, varying the global factor to cover a wide range of uniform tessellations. When ren-
dering refinement patterns, we employ instancing to limit API overhead to just one draw call,
noting that batch building is trivial because only a single refinement pattern is utilized. Sim-
ilarly, our CudaTess implementation simplifies to generating vertex and index buffer data, as
tessellation factors are prescribed and all buffer slots are of equal size. The performance data
in Fig. 7.23 shows that CudaTess is always faster than rendering refinement patterns. This can
be attributed to the higher efficiency of executing surface evaluation in a patch-parallel way
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and especially the involved caching of control points in shared memory. Note that a further
speed-up is possible if forward differencing is employed.

To enable an even more direct comparison of the evaluation performance and also reveal
the overhead in CudaTess for creating index data for the tessellation topology, we further in-
clude frame times for a CudaTess version where a precomputed index buffer is used and only
the vertex data is regenerated every frame. Moreover, we considered reusing a tessellation for
the next passes.While employing the compact indexed buffer data readily available inCudaTess
results in significant speed-ups, the alternative of capturing the rendered refinement patterns in
a stream output buffer and rendering it in subsequent passes doesn’t scale that well. Evenworse,
because only a triangle soup is recorded, causing valence-n vertices to be stored n times, a huge
stream output buffer is required which quickly exhausts the available memory.

For assessing adaptive tessellation performance, we applied the rendering of refinement
patterns to all our CudaTess example scenes. In a preparation step, we determine the tessella-
tion factors and generate just the actually required refinement patterns. We consider the cases
of supporting all tessellation factor configurations, of restricting the factors to dyadic values,
and of adapting uniform dyadic tessellations (cf. Sec. 7.5.4). Furthermore, we distinguish be-
tween immediate rendering, issuing one draw call per (visible) patch, and batched rendering
via instancing, invoking one draw call per pattern. Note that we build the batches and popu-
late a per-instance data buffer with the appropriately arranged patch control points during the
preparation step. Table 7.8 lists the measured performance data.

Immediate rendering of refinement patterns turns out to be significantly slower than Cuda-
Tess. The only exception is the tea table scene with its small number of patches and hence lim-
ited potential for high GPU utilization with a patch-parallel approach like CudaTess. On the
other hand, the encountered high tessellation rates make this scene an ideal case for the imme-
diate refinement pattern technique, effectively amortizing the API invocation overhead.

When rendering refinement patterns with instancing, the performance improves signifi-
cantly for more complex scenes, underlining the importance of building larger batches. Never-
theless, our CudaTess implementation is still clearly faster for all rational Bézier patch examples
but the simple tea table scene, especially when utilizing forward differencing.

In case of PN triangles, however, the situation is less obvious. If refinement patterns for
arbitrary combinations of integer tessellation factors are employed, CudaTess appears to be of-
ten slower. One main reason for this difference to the rational Bézier patch setting is that the
evaluation of PN triangles is cheaper than that of Bézier patches, limiting the overall impact
of accelerating this step in CudaTess. On the other hand, we perform batch building in the
preparation phase for our static viewpoints, while in practice this may reasonably be expected
to consume some amount of runtime, thus reducing the achievable frame rate.Moreover, recall
that we only created the refinement patterns actually used for one specific viewpoint, circum-
venting the issue of excessive storage requirements. But if the hence more realistic option of
rendering dyadic refinement patterns is pursued, the performance is typically reduced because
significantlymore surface samplesmust be processed. By contrast, CudaTess can efficiently deal
with any tessellation factor configuration, since it constructs tessellation patterns on the fly.

It is interesting to note that these performance characteristics indicate that—at least in cases
where it is rather expensive to evaluate a surface at a given sample position—CudaTess is com-
petitive even against approaches where the refinement patterns are not explicitly rendered but
emitted by a hardware tessellation unit. Moreover, CudaTessmay have to evaluate fewer sample
points, since a dedicated tessellator may output a pattern which features more vertices than our
pattern scheme for equivalent tessellation factors, as is the case withDirect3D 11 (cf. Sec. 7.3.2).
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Refinement patterns, Refinement patterns,
integer tessellation dyadic tessellation

Scene #P #T Immed. Batched #P #T Immed. Batched

Tea table 81 41,372 595 Hz 365 Hz 26 80,808 515 Hz 262 Hz
Killeroo 179 100,930 44 Hz 146 Hz 70 125,396 44 Hz 133 Hz
Killeroo herd 109 345,751 5.6 Hz 32 Hz 74 357,110 5.6 Hz 31 Hz
Spheres 7 402,000 16 Hz 49 Hz 7 586,400 16 Hz 38 Hz
Spheres (close-up) 54 272,301 49 Hz 86 Hz 13 406,200 49 Hz 63 Hz

Double torus 23 15,320 307 Hz 979 Hz 11 23,660 307 Hz 977 Hz
Elephant 65 79,206 25 Hz 303 Hz 31 102,542 25 Hz 305 Hz
Star field 4 1,050,688 13 Hz 110 Hz 3 2,410,336 13 Hz 60 Hz
Star field (close-up) 57 379,982 102 Hz 180 Hz 7 777,472 100 Hz 124 Hz
Model zoo 74 160,200 6.6 Hz 86 Hz 35 198,540 6.6 Hz 86 Hz

Refinement patterns, adapted CudaTess
uniform dyadic tessellation Adaptive Forward

Scene #P #T Immed. Batched #P #T tess. diff.

Tea table 5 237,664 303 Hz 51 Hz 81 41,372 213 Hz 271 Hz
Killeroo 4 226,518 41 Hz 41 Hz 179 100,930 173 Hz 225 Hz
Killeroo herd 4 568,326 5.1 Hz 10 Hz 109 345,751 60 Hz 84 Hz
Spheres 2 774,400 15 Hz 14 Hz 7 402,000 111 Hz 124 Hz
Spheres (close-up) 3 457,472 46 Hz 26 Hz 54 272,301 102 Hz 139 Hz

Double torus 3 25,104 285 Hz 979 Hz 23 15,320 431 Hz
Elephant 4 119,226 23 Hz 310 Hz 65 79,206 286 Hz
Star field 2 2,540,544 12 Hz 55 Hz 4 1,050,688 70 Hz
Star field (close-up) 3 792,320 92 Hz 118 Hz 57 379,982 131 Hz
Model zoo 5 224,263 6.1 Hz 86 Hz 74 160,200 156 Hz

Table 7.8 Performance comparison between various approaches for rendering refinement
patterns and CudaTess. The determination of tessellation factors as well as preparations for in-
stanced rendering are not included in the timings. (#P: number of different patterns used/cre-
ated; #T: number of rendered triangles; Immed.: one draw call per patch; Batched: one draw
call per pattern)

Finally, it seems necessary to point out that the reported performance data was obtained
with driver version ForceWare 175.19 under Windows XP, because during our tests we ob-
served that the employed driver version often measurably impacts performance. For instance,
compared to the listed frame rates, a different driver resulted in a 25% performance gain for
rendering the Killeroo herd scene with CudaTess. Another driver showed only small perfor-
mance effects of using forward differencing. Moreover, the instanced rendering of refinement
patterns was up to four times slower with a CUDA-specific driver than the figures reported.
On an NVIDIA GeForce GTX 280, we even encountered the situation that rendering refine-
ment patterns with surface evaluation in the vertex shader is faster than rendering a precom-
puted mesh of the corresponding adaptive tessellation. Consequently, any method like Cuda-
Tess which generates an explicit representation of the whole tessellation is doomed with such
a driver behavior.
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CHAPTER 8

Fundamentals of humanvisual perception

Real-time rendering of scenes produces a sequence of frames, which are output on a display
device and are then ultimately viewed by a user. Consequently, algorithms should ideally be
aware of human visual perception and its limitations, and only spend additional effort on rais-
ing quality if this improvement can actually be perceived. Although this goal is elusive, not
least because our understanding of visual perception is far from complete and large variations
among humans exist, taking some perceptual considerations into account during rendering is
quite possible and worthwhile. It helps reducing excessive quality improvements that eventu-
ally remain imperceptible but also spending a limited time or resource budget wisely, i.e. such
that roughly the best perceived quality possible under the imposed constraints is achieved. For
instance, the geometric level-of-detail selection may be guided by estimates of the actual dis-
criminability or of the perceivable difference between two LODs instead of just their geometric
deviation.

In this chapter, we briefly review some fundamentals of human visual perception. After
covering perception and its measurement within psychophysics in general, we discuss relevant
characteristics of the human visual system. Subsequently, color and its representation in color
spaces that are perceptually roughly uniform as well as color appearance are discussed. Finally,
attention, which causes normally perceptible changes like quality degradations to go unnoticed,
is dealt with.

Building on this background information, the next chapter then describes how some core
elements of human visual perception can be modeled and how such perceptually motivated
components can be applied to rendering. In particular, we present an approach which incor-
porates on-the-fly evaluation of a perceptually based metric within the real-time context.

The part is concluded by Chapter 10 on visual popping.There, we introduce a perceptually
motivated predictor which estimates whether popping due to a LOD change is perceptible and
as how severe this temporal artifact is likely perceived.

8.1 Human perception and psychophysics

Human perception is the complex process of acquiring sensory information about physical
stimuli of the environment via sense organs like the eyes and deriving an interpretation from
it.This translation typically involves selecting relevant sensory stimuli and factoring in experi-
ences, andmay comprise determining higher-level features. For instance, in vision, the scene is
analyzed and distinct objects but also shadows are detected. Note that different modalities like
vision and auditory perception are not processed completely independently from each other
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but usually interact to some degree. Related cross-modal effects may, for example, improve
the detection of a visual target [389]. As an aside, even a whole multi-partner research project
funded by the European Union (CROSSMOD), in which we participated, was dedicated to
leveraging such audio-visual cross-modal interactions for improving rendering quality and ef-
ficiency.

In order to harness and account for perception, it is important to investigate relations be-
tween physical stimuli and the induced subjective percepts. Such studies are the concern of
psychophysics, a branch of psychologywhich aims at objectivelymeasuring these relationships.
A good overview of related experimental methods, targeted specifically to computer graphics
researchers, is provided by Ferwerda [125].

One central concept in psychophysics is that of threshold. An absolute or detection threshold
specifies the level of stimulus intensity at which the presence of a stimulus becomes detectable.
On the other hand, a difference or discrimination threshold quantifies the minimum intensity
difference between two stimuli that is required to be able to discriminate between them, i.e.
to detect that they are different. This change ΔI in intensity I necessary for discriminability is
referred to as just noticeable difference (JND). According toWeber’s law, which is actually only
an often appropriate approximate rule, the ratio ΔI/I = k is a constant.1

Note that a threshold is not an exact quantity and that at the according intensity level
no hard transition in detectability occurs. Instead, a threshold corresponds to the intensity
at which a stimulus or change in stimulus, respectively, was detected by subjects with a certain
probability p in a psychophysical experiment. Typically, a value of p = 75% is selected for estab-
lishing 1 JND in case a 2AFCmethod2 is employed. Finally, note that the inverse of a threshold
is commonly called sensitivity.

8.2 Human visual system

Thehuman visual system (HVS) is responsible for visual perception and hence deserves further
study. In the following, we briefly review some of its characteristics, paying special regard to
aspects relevant for computer graphics. More details can be found, for instance, in Wandell’s
book [393] or Ferwerda’s tutorial [123].

Visual stimuli are acquired by the eyes. Light enters through the pupil and is focused by the
cornea and the lens onto the retina, where an image is formed (cf. Fig. 8.1).The cornea features
a large refractive power, which is however basically fixed, and hence it is the responsibility of
the lens to finely adjust the focal length via the process of accommodation. The pupil serves as
aperture, with its size being controlled by the iris.

The retina comprises several layers of neurons, including two types of photoreceptors, rods
and cones, which are responsible for capturing incident light. While rods are extremely sensi-
tive to light and hence offer vision at low light levels, cones are active at higher levels, where
rods eventually become saturated. Since all rods essentially feature the same spectral respon-
sivity, they can only convey achromatic information. By contrast, three different kinds of cones,
termed L, M, and S cones, exist, which have their peak sensitivities in the long (red), medium
(green) and short (blue) wavelength range, respectively, of the visible spectrum (from about

1It was postulated by Ernst Heinrich Weber in 1834 based on experiments with lifting weights.
2Short for two-alternative forced-choice. Here, two stimuli are presented, and the subject is asked whose in-

tensity is larger. As the name indicates, the subject is forced to make a choice. Consequently, in case no difference
is perceived, the subject can only guess, resulting in a selection probability of p = 50%.
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Figure 8.1 Schematic view of the human eye.

380 to 750 nm). Providing an RGB-like trichromatic encoding, they are hence able to capture
color (see also Sec. 8.3). In the fovea, subtending about two degrees of visual angle near the
center of the retina, spatial resolution is highest, with approximately 120 cones being contained
per degree of visual field. Acuity quickly drops substantially with increasing distance from the
fovea, and rods, which are completely missing in the central fovea, become dominating in the
retina’s peripheral areas. Note that apart from photoreceptor density, the effective optical reso-
lution of the HVS is also affected by chromatic aberration resulting from the inability to focus
all wavelengths simultaneously. This is directly reflected in the relative number of L, M and S
cones (about 12 ∶ 6 ∶ 1), where the sparseness of S cones accounts for the strong defocus of the
shorter wavelengths.

The rods and cones connect via bipolar cells to ganglion cells. Each such cell responds to
input originating from a certain region in the visual field, called its receptive field. It features an
antagonistic center–surround organization, where the cell is excited by light hitting the cen-
ter region of the field and inhibited by light falling on its concentric surround (on-center/off-
surround), or vice versa (off-center/on-surround). This effectively corresponds to deriving in-
formation about local changes, i.e. computing contrast.

The axons of the retinal ganglion cells form the optic nerve, which goes to the two lateral
geniculate nuclei (LGN), where the LGN in one hemisphere (left/right) of the brain processes
information from the two eyes for the opposite half of the visual field (right/left). The LGN
projects to the primary visual cortex in the occipital lobe. Here, cells exist which are selective to
features like spatial frequency, orientation, texture or motion direction. Perceptual processing
then continues in further cortical areas.

The HVS developed several techniques to optimize the usage of visual pathways. For in-
stance, recall that color is initially encoded by the responses of the three different cone types.
Because their spectral responsivities overlap significantly, however, the resulting signals are
later decorrelated to improve representational efficiency. To this end, they are transformed to an
achromatic response and two chromatic, opponent-color signals, spanning bipolar axes from
red to green and yellow to blue, respectively.

Another example is visual adaptation to the prevalent environmental conditions. It serves
to support vision over a wide range of illumination levels (covering more than ten orders of
magnitude). At any specific level to which the HVS is adapted, however, discrimination ability
is limited to a significantly smaller range (of up to three orders of magnitude). The adapta-
tion mechanism involves changing the pupil size and adjusting cell response sensitivities, for
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Figure 8.2 Campbell-Robson chart [61, 291]. It nicely demonstrates that contrast detection
threshold (the lowest contrast along vertical axis direction that can still be recognized) is a
function of spatial frequency (i.e. varies in horizontal axis direction).

instance by shifting the limited operating range of retinal cells. Consequently, the detection
threshold for a visual stimulus depends on the surrounding illumination. This non-linear re-
lationship can be described by a threshold-versus-intensity (TVI) function. It is typically deter-
mined by briefly showing a disk of luminance3 L+ΔL on a uniform background of luminance L
to which the subject is completely adapted.

In addition to coping with varying light levels, the HVS can also adapt to changes in the
spectral power distribution of the illumination.This so-called chromatic adaptation is partially
realized by adjusting the sensitivities of the three cone types independently.

The previously mentioned availability of cells which are sensitive to certain stimulus char-
acteristics suggests that visual stimuli are actually processed in multiple channels by according
visual mechanisms.These are tuned, for instance, to bands of spatial frequency and of orienta-
tion, with the orientation bandwidths being larger at lower frequencies as well as for chromatic
information. Note that the frequency decomposition, which probably originates in the varying
sizes of the ganglion cells’ receptive fields, may give rise to a multi-resolution representation
of the retinal image, where lower-frequency bands are encoded at a lower effective resolution.
Apart from spatialmechanisms selective in frequency and orientation, theHVS further features
temporal mechanisms. These are often assumed to just comprise a low-pass and a band-pass
mechanism, called sustained and transient channel, respectively [132, 198].

Partially caused by the tuning of cells to frequency bands, the ability to detect a stimulus
depends on its spatial frequency content (see Fig. 8.2). It is typically quantified by a contrast

3Luminance is the photometric equivalent to radiance. In photometry, the wavelength-dependent sensitivity
of the HVS is accounted for by weighting the according spectral radiometric quantity with the so-called luminous
efficiency function, derived for a standard observer.
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(a) Low frequency (b) High frequency

Figure 8.3 Two example Gabor patches (of identical contrast) employed for measuring con-
trast detection thresholds.

sensitivity function (CSF). This is experimentally obtained by considering periodic stimuli like
sine-wave gratings or their convolutions with a Gaussian envelope, so-called Gabor patches (cf.
Fig. 8.3). The measured detection threshold is defined in terms ofMichelson contrast

Lmax − Lmin
Lmax + Lmin

= ΔL
L̄

with Lmax = L̄ + ΔL, Lmin = L̄ − ΔL,
where ΔL denotes the amplitude and L̄ the base-level luminance of the corresponding stimulus.
For the achromatic channel, the CSF shows a band-pass behavior, where the peak sensitivity
increases with luminance level. In accordance with the optical properties of the eye and the
density of the photoreceptor mosaic, the sensitivity becomes zero at frequencies beyond about
60 cycles per degree of visual angle (cpd).The CSFs for the chromatic channels are of low-pass
nature, have smaller peak sensitivities, and feature lower cut-off frequencies. This is especially
true for the yellow–blue channel owing to the wider spacing of the relatively few S cones.

The threshold for detecting a stimulus is typically affected by the presence of another stim-
ulus, a phenomenon called visualmasking. A test or target pattern that is just visible by itself is
masked by amasking stimulus if their superposition cannot be discriminated from themasking
stimulus alone. Consequently, the masking pattern raises the contrast required for the target
to be detectable.4 On the other hand, at least in case test and masking pattern show similar
characteristics, it may happen that the presence of the masking stimulus actually facilitates de-
tection of the test pattern, i.e. although the test pattern alone is not visible, its superposition
with the masking stimulus is discriminable from just the masking pattern [213]. Masking is
most pronounced for signals within the same channel but may as well occur across channels.
Furthermore, note that masking also happens in the temporal domain.

Visual masking is often exploited in computer graphics to hide artifacts and conceal lower
rendering quality. For instance, applying a complex texture may mask lower soft shadow qual-
ity (recall Fig. 5.4 on page 76), coarse quantizations (like considering only 8×8 regularly spaced
light sample points during soft shadow computation), and low tessellation rates (except at sil-
houettes).

4An intuitive way to think about (within-channel) masking is that a masking stimulus already introduces a
visible contrast cm, and hence, to detect a superimposed target stimulus of contrast ct, it becomes decisive that the
resulting “contrast” ((cm + ct) − cm)/cm = ct/cm between the overall contrasts cm and cm + ct is above a certain
threshold.
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8.3 Color and color appearance

In a nutshell, the perception of color comprises threemain steps. At first, light hitting the retina
is captured by cones, whose responses provide an initial trichromatic encoding. This is then
converted to an opponent color representation. Finally, the according signals are subjected to
further cognitive processing.

Recall that each of the three cone types has a distinct spectral responsivity. Cone responses
to an incident light can hence be determined by computing the integral of this responsivitymul-
tiplied with the light’s spectral power distribution over all wavelengths. Note that this means
that the spectral power distribution gets reduced to just three values. As a consequence, dif-
ferent spectral power distributions may yield identical responses and hence cannot be distin-
guished. Corresponding color pairs are referred to as metamers.

This is actually exploited to reproduce a certain color by taking a set of three lights with
different spectral power distributions (like the phosphors employed in CRT displays), the so-
called primaries, and mixing them together, where the power of each is adapted appropriately
such that the desired cone responses are evoked. The color may therefore also be specified by
the employed amounts of the primaries instead of the corresponding cone responses. Note that
the conversion between these different sets of so-called tristimulus values can be described by
a simple linear transformation.This also enables choosing actually non-existent primaries that
yield tristimulus values which have a desired behavior or meaning.

One prominent example is the CIE XYZ color space, which was designed such that the Y
value corresponds to the color’s luminance. By contrast, Meyer [251] derived his AC1C2 space
by decorrelating cone responses via a principal component analysis.The achromatic channel A
roughly equals CIE Y , while the chromatic channels correspond to red–green (C1) and yellow–
blue (C2) opponencies. Interestingly, the color space was devised with the aim of computing
AC1C2 tristimulus values from a given spectral power distribution via Gaussian quadrature
using a minimum number of wavelength samples.

Ideally, a color space should be perceptually uniform such that the Euclidean distance be-
tween two colors indicates the magnitude of their perceived difference. To approach this goal,
more advanced opponent color spaces have been devised which subject tristimulus values to
further non-linear transformations. They typically compress high values and augment small
values to account for the discrimination threshold rising with stimulus intensity. Moreover,
they may perform some form of chromatic adaptation.

One major example is the CIE L∗a∗b∗ (or just CIELAB) color space, where L∗ denotes
lightness and a∗ and b∗ specify the position with respect to the red–green and yellow–blue op-
ponencies. As it is not completely uniform, several advanced formulae have been proposed for
computing color differences, improving on using just Euclidean distance. A reasonably simple
and hence popular one is CIE94, which introduces chroma- and hue-dependent weights for
achieving a greater uniformity [112]. Another officially endorsed formula is the computation-
ally much more involved CIEDE2000 [354], which features additional improvements, mainly
affecting the performance for blue and gray colors. Nevertheless, it still suffers from several
problems [197].

Further examples specifically devised for image processing applications include IPT [103],
which aims at being uniform in perceived hue, as well as Chong et al.’s color space [70], whose
parameterizationwas directly derived from the objectives of being perceptually uniform aswell
as of color difference vectors being invariant to reillumination.

While these color representations are well suited to quantify perceived color differences,
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Figure 8.4 Example of simultaneous contrast. Although the two small gray rectangles are of
identical shade, as demonstrated in the right image, they appear to be of different brightness in
the left image.

they are largely unable to describe a color’s actual appearance because this is influenced by
many additional factors that are not accounted for. They hence cannot capture effects like si-
multaneous contrast (see Fig. 8.4) or that of “discounting the illuminant”, where the influence
of the illumination’s color is discounted when perceiving the color of an object.

This shortcoming is addressed by color appearance models (CAMs) [112]. They require the
specification of additional parameters, like the relative luminance of the surround or the illumi-
nation’s color, and utilize these tomodel mechanisms like chromatic adaptation as well as some
appearance effects. A color’s predicted appearance is then usually described in terms of appear-
ance attributes like hue, lightness, brightness, chroma, colorfulness and saturation. Examples of
CAMs are CIECAM97s [242] and its simpler but often superior successor CIECAM02 [256].
Also note that with CAM02-SCD and CAM02-UCS [241] two color difference formulae for
the CIECAM02 model were developed which perform well for both daylight conditions and
incandescent lighting, as often encountered in rooms.

One major limitation of both the perceptually (roughly) uniform color spaces as well as
of CAMs is that they were designed for uniform color patches subtending a visual angle of
normally two degrees.They are hence ignorant of the spatial structure of more complex stimuli
like images, which, however, clearly affects color perception.

To somewhat alleviate this, Zhang and Wandell [415] extended CIELAB to S-CIELAB, in-
troducing a preprocessing step whichmaps the input tristimulus values into an opponent color
space and then performs a spatial filtering with a CSF approximation (a series of Gaussians),
before finally transforming into CIELAB space. To exercise more control over the filter kernel,
CSF filtering may alternatively be performed in frequency space [173], which, however, ne-
cessitates computing Fourier transformations. A completely different approach is adopted by
Hong and Luo [163], who weight CIELAB pixel differences according to their importance. To
this end, first a histogram of hue values is determined, which is then used to derive a measure
of significance. Furthermore, with the modular iCAM framework [113, 114] and its variant
iCAM06 [196], first efforts emerged to evolve CAMs to complete image appearance models,
which allow assessing image quality and quantifying image differences as well as maintaining
image appearance across different media (of potentially varying dynamic range).

8.4 Visual attention

The human’s processing capacity is limited and, in particular, significantly too small to com-
pletely process all acquired sensory information. One mechanism to cope with this situation is
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attention [171], which serves to select relevant information and to allocate resources accord-
ingly. In case of vision, attention often causes the region of primary importance to be fixated on,
such that it is captured by the fovea, where the eye’s spatial resolution is highest. Interestingly,
when a stimulus is completely unattended, it may go unnoticed despite being clearly visible and
even if it is recorded by the fovea, a phenomenon called inattentional blindness.

Attention is guided by a low-latency bottom-up process, which is purely stimulus-driven
and attracted by salient image features, and a top-down process, which is task-dependent. A
well-known computational model for the first component is the saliency map [170, 172], which
derives for each pixel of a given image its saliency relative to the whole image. At first, visual
features like color (using four channels: red, green, blue, yellow), intensity and orientation are
determined. Then, according multi-scale feature maps are derived by applying difference-of-
Gaussians filters corresponding to center-surround receptive fields at different scales. Finally,
these maps are combined to a saliency map. Several improvements for, extensions to and vari-
ants of this basic model have been devised. Walther [392], for instance, points out problems
with the original definition of color opponencies and incorporates motion as an additional
feature. A simplified GPU-based implementation is described by Longhurst et al. [228], which
apart from color and luminance takes edges, motion, depth and also habituation into account.
We note, however, that their employed feature map combination strategy [227] didn’t yield sat-
isfactory results in tests we conducted. Furthermore, the concept of a saliency map was also
transferred to the geometric domain to quantify regional importance on meshes [210] as well
as to the auditory modality [179].

The top-down attentional process is significantly harder tomodel, as it depends on the con-
text of viewing and the person’s experiences. An often-cited study by Yarbus [407], which was
later repeated [221], corroborating many original results, shows that the gaze pattern when
viewing a painting is strongly influenced by a given task, suggesting that attention is guided by
such a task. This motivated researchers like Cater et al. [63] to encode task relevance in a task
map analogous to the saliency map. However, automatically deriving such task maps remains
an open challenge. Perhaps recent results utilizing eye tracking [295, 369] may eventually lead
to a practical way to achieve this, though, at least for some applications. But even then, fur-
ther issues like combining bottom-up and top-down predictions or accounting for the viewer’s
memory remain to be solved.
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Perceptually motivated rendering

The general overview of human visual perception and according aspects relevant to computer
graphics provided in the last chapter suggests a huge potential that exploiting perception offers
for improving rendering efficiency and selecting the lowest quality actually required to evoke
a realistic appearance. But it also raises the question how these perceptual concepts and char-
acteristics can concretely be utilized for rendering.

This chapter is dedicated to address that issue. At first, we present realizations of core prop-
erties like varying contrast sensitivity and visual masking, which can be used as building blocks
in perceptually based algorithms. They are also employed in more complex components, like
complete computational vision models and visual difference metrics, which we briefly review
subsequently. After that, a short overview of existing perceptually-motivated applications is
given, which demonstrate the concrete utilization of perceptual results in domains like image
synthesis.

Disproving the often-voiced complaint that perceptually based image metrics are too time-
consuming to evaluate for being suitable for on-the-fly usage in real-time rendering, we then
present a rapid GPU-based implementation of threshold maps. These encode for each pixel of
an input image the threshold below which a change in luminance will not be noticed. Serving
as an enabling core component, they are key to a subsequently described interactive perceptual
rendering pipeline which exploits inter-object, scene-level visual masking for geometric LOD
control. Finally, we conclude with highlighting some general problems encountered when ap-
plying perceptual results.

9.1 Building blocks for computational models

Human visual perception is a complex process, which involves many interacting mechanisms
and is far from being completely understood. To cope with this complexity, it is reasonable to
try to concentrate on individual aspects and investigate andmodel them in isolation. Note that
such a procedure is also required by psychophysical experimental practice to keep the number
of parameters low.The resulting components can then be combined appropriately to implement
a more complete computational model that takes several aspects into account simultaneously.

In the following, we describe some relevant example realizations of such building blocks,
focusing on contrast sensitivity functions, the effect of visual masking, and the decomposition
of an image into multiple channels, for instance tuned to certain bands of spatial frequency.
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9.1.1 Contrast sensitivity functions

Owing to the optics of the eye1 and the subsequent neuronal processing (starting with the
photoreceptors), the contrast threshold for detecting a stimulus is not constant but depends on
many factors like its spatial frequency content and the adaptation luminance, i.e. the luminance
level the HVS is currently adapted to. As detailed in Sec. 8.2, this threshold variation is typically
quantified in terms of a contrast sensitivity function.

Luminance CSFs

The vast majority of contrast sensitivity measurements conducted are concerned with lumi-
nance contrast. Taking the data from one such study, Barten [23, 24] derived the following
simple CSF:

csfB89(ρ, L) = aρ exp(−bρ)√1 + c exp(bρ) (9.1)

with
a = 440 (1 + 0.7/L)−0.2, b = 0.3 (1 + 100/L)0.15 and c = 0.06,

where ρ denotes spatial frequency in cpd and L is the adaption luminance in cd/m2. As Fig. 9.1 a
shows, the CSF features a band-pass behavior, and peak sensitivity rises with adaption lumi-
nance. Note that an extension exists which additionally takes the effect of display size into
account [23, 25].2

Later, Barten [26] also devised a complex physical contrast sensitivity model that accounts
for many influences like neural noise. A simplified version for a typical viewer is given by

csfB03(ρ, L,A) = 5200 exp(−0.0016ρ2 (1 + 100/L)0.08)FGGH(1 + 144
A

+ 0.64ρ2)( 63
L0.83

+ 1
1 − exp(−0.02ρ2))

, (9.2)

whereAdenotes the angular display area in square degrees of visual angle. Furthermore, Barten
describes extensions to account for orientation (sensitivity is highest for horizontal and vertical
gratings) and the effect of surround illumination.

Several other CSFs have been derived, ranging from pretty sophisticated ones, like Daly’s
function [84, 85] of spatial frequency, orientation, adaptation luminance, display size, viewing
distance and eccentricity, to simple ones, like Martin et al.’s fit [249] to measurements by van
Nes and Bouman [383],

csfM92,L(ρ, L) = 10S(log10 ρ, log10 L)
with

S( f , l) = (2.094 + 0.6019 f − 0.9730 f 2) + (0.2218 + 0.6828 f − 0.3656 f 2)l− (0.10258 − 0.07854 f + 0.05234 f 2)l2 − (0.01557 + 0.02197 f − 0.03920 f 2)l3.
1The blurring caused by the optical system (e.g. by cornea and lens) can be described by a point spread function

(PSF). Its convolution with an input image then yields the appropriately defocused “retinal” image. Equivalently,
an optical transfer function (OTF) in Fourier domain may be utilized.

2The only change is actually to set a = 540 (1 + 0.7/L)−0.2 / (1 + 12
w (1+ 1

3 ρ)2
), wherew denotes the angular dis-

play size in degrees.
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Figure 9.1 Luminance and chromatic CSFs at different adaptation luminance levels.

Chromatic CSFs

By contrast, little data is available for chromatic contrast sensitivity. Often, the results of mea-
surements made by Mullen [258] are employed. Martin et al. [249], for instance, provide the
following fits:

csfM92,R–G(ρ, L) = S(log10 ρ, log10 L,−0.58800, 2.1406, 0.9153,−0.2664),
csfM92,B–Y(ρ, L) = S(log10 ρ, log10 L,−0.16111, 1.9395, 0.8347,−0.2728),

where

log10 S( f , l , a, b, c, d) = a + {b, f ≤ d
b − c ( f − d)2, otherwise

} + {0.5 l , l ≤ 2.3
1.15, otherwise} .

Note that due to the absence of according data, the dependency on adaptation luminance L is
simply modeled by scaling the sensitivity according to the square root of L. The two CSFs are
depicted in Fig. 9.1 b, demonstrating their low-pass nature.

As pointed out by Bolin and Meyer [40, 41], Mullen’s experiments corrected for chromatic
aberration, and hence this effect should be accounted for when applying the CSFs, effectively
reducing sensitivity for the blue–yellow channel (csfM92,B–Y).

Spatio-velocity CSFs

Furthermore, CSFs have been derived formoving stimuli.One such spatio-velocityCSF is given
by Kelly [183]:

csfK79(ρ, v) = (6.1 + 7.3∣log10(v/3)∣3)v (2πρ)2 exp(−4πρ(v + 2)/45.9), (9.3)

where v denotes retinal velocity in degrees of visual angle per second (deg/s). Note that due to
drift eyemovements, the retinal velocity of static stimuli fixated on is typically non-zero (about
0.15 deg/s).
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Introducing parameters c0, c1 and c2 for adapting aspects like the frequency of peak sensi-
tivity, this model was later refined by Daly [86] to

csfD98(ρ, v) = (6.1 + 7.3∣log10(c2v/3)∣3) c0c2v (2πc1ρ)2 exp(−4πc1ρ(c2v + 2)/45.9). (9.4)

For a luminance level of about 100 cd/m2, he suggests using the values c0 = 1.14, c1 = 0.67 and
c2 = 1.7.

A different approach is taken by Burbeck and Kelly [57], who express the CSF as a lin-
ear combination of two space-time-separable low-pass-like functions modeling an excitatory
center and an inhibitory surround component:

csfB80(ρ, v) = E(ρ, v) − I(ρ, v)
with

E(ρ, v) = SE(ρ)TE(ρv)
SE(0.5 cpd) and I(ρ, v) = SI(ρ)TI(ρv)

SI(0.5 cpd) ,
where both the spatial terms

SE(ρ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
csfK79(10 cpd, 0.1 deg/s)
csfK79(10 cpd, 1.9 deg/s) ⋅ csfK79(ρ, 19 cy/s/ρ), ρ ≤ 10 cpd
csfK79(ρ, 1 cy/s/ρ), otherwise

SI(ρ) = SE(ρ) − csfK79(ρ, 1 cy/s/ρ)
and the temporal ones

TE(ω) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
csfK79(0.5 cpd, 38 deg/s)
csfK79(10 cpd, 1.9 deg/s) ⋅ csfK79(10 cpd,ω/10 cpd), ω ≤ 19 cy/s
csfK79(0.5 cpd,ω/0.5 cpd), otherwise

TI(ω) = TE(ω) − csfK79(0.5 cpd,ω/0.5 cpd)
are defined using Kelly’s CSF from (9.3).

Later, Kelly [184] observed that by combining the center and surround components addi-
tively instead of subtractively a chromatic CSF is obtained:

csfK83(ρ, v) = 1
30(E(ρ, v) + I(ρ, v)). (9.5)

Caveats

Given this variety of CSFs, it is worth recalling that they are typically the result of some function
fitting to one or more data sets. Hence, different sensitivities may be reported depending on
the underlying measurements. In particular, note that experimental stimuli and conditions as
well as the subjects have a large influence on the results. As a concrete example, consider the
luminance CSFs shown in Fig. 9.2. Although they all exhibit a similar band-pass behavior,
they differ in both the magnitude of the peak sensitivity and the spatial frequency where it
occurs. Further note thatwhile aCSF can be evaluated at arbitrary parameter values, itmay only
provide reasonable results for a limited range, depending on the fitting procedure employed in
its derivation and on the parameter range covered by the base data set. Consequently, CSF
values should always be considered a rough estimate and not a ground truth. This analogously
applies to other perceptual functions.
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Figure 9.2 Different luminance CSFs at adaptation luminance level L = 100 cd/m2: Barten’s
csfB89(ρ, 100 cd/m2) and csfB03(ρ, 100 cd/m2, 11° ⋅ 17°), Martin et al.’s csfM92,L(ρ, 100 cd/m2)
and Daly’s csfD98(ρ, 0.15 deg/s).
Threshold versus intensity

A CSF quantifies the detection threshold for a periodic pattern of a certain spatial frequency.
By determining the minimum threshold across all frequencies for a given luminance level, a
threshold-versus-intensity function can be derived:

tvi(L) = L
maxρ csf(ρ, L) .

However, since CSF data sets typically only consider a small number of luminance levels L, and
hence luminance dependency is usuallymodeled by simple expressions, suchTVI functions are
not very accurate.

Better results are obtained by deriving a function directly from dedicated TVI measure-
ments (cf. Sec. 8.2). For instance, Ward et al. [394] give the following TVI function:

log10 tviW(L) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.86, log10 L < −3.94,(0.405 log10 L + 1.6)2.18 − 2.86, −3.94 ≤ log10 L < −1.44,
log10 L − 0.395, −1.44 ≤ log10 L < −0.0184,(0.249 log10 L + 0.65)2.7 − 0.72, −0.0184 ≤ log10 L < 1.9,
log10 L − 1.255, 1.9 ≤ log10 L.

(9.6)

Note that it is just a combination of rod- and cone-specific TVI functions provided by Ferw-
erda et al. [126], with rods featuring a higher sensitivity than cones for luminance levels below
log10 L = −0.0184.

Fig. 9.3 depicts bothWard et al.’s TVI function aswell the one implied byBarten’s CSF csfB89.
They are additionally shown using the alternative representation as contrast-versus-intensity
(CVI) function

cvi(L) = tvi(L)
L

.
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Figure 9.3 TVI functions and their corresponding CVI functions.The TVI function derived
from Barten’s CSF csfB89 is scaled such that it coincides with Ward et al.’s TVI function tviW at
luminance level L = 100 cd/m2.

9.1.2 Visual masking

Recall from Sec. 8.2 that visual masking causes the detection threshold for a stimulus to be
affected by the presence of another stimulus, that is, the threshold is elevated (or reduced in
case of facilitation). Ignoring cross-channel masking effects, one approach tomodel masking is
to consider the superposition of target andmasking stimulus and compute a threshold elevation
factor for the combined contrast signal. An according function was devised by Daly [84, 85]:

TD(c) = (1 + (k1(k2c)s)b)1/b , (9.7)

where c denotes normalized contrast (contrastmultiplied by the according contrast sensitivity),
i.e. c = 1 corresponds to 1 JND. He advocates using the constants k1 = 0.0153, k2 = 392.498,
b = 4 and s = 0.7. Note that TD converges to cs = c0.7 for increasing c.

Elevating a detection threshold effectively compresses the according contrast signal. One
may hence equivalently subject the contrast to a so-called transducer function, where the rela-
tionship

transducer(c) = c
elevation

holds. An example is Lubin’s transducer [236]

TL(c) = 2cn
cn−w + 1 , (9.8)

where n ∈ [2, 2.5] and w = 0.2 are reasonable parameter choices [215].
Furthermore, some mechanisms for modeling masking are offered by JPEG 2000 as part

of its visual optimization tools [87, 413]. They employ a simple power function cα (0 < α ≤ 1)
as transducer, where a value of α = 0.7 is used instead of the typically adopted choice α = 0.3
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Figure 9.4 Visualmasking functions. For Lubin’s transducer TL, values of n = 2.2 andw = 0.2
are employed.

(like in TD’s asymptotic behavior), yielding better results. An extension of this basic so-called
self-masking is point-wise extended masking, which performs an additional normalization by a
neighborhoodmasking factor, taking also a pixel’s vicinity into account.This enables capturing
further masking due to complex texture.

Finally, note that within our vision model, detailed later in Sec. 10.3.3, we obtained good
results with the transducer

T(c) = sign(c) ⋅ ∣c∣(1 + (∣c∣0.3)10)0.1 , (9.9)

which corresponds to Daly’s threshold elevation function from (9.7) with constant values k1 =
k2 = 1, b = 10 and s = 0.3. It is depicted in Fig. 9.4, together with the other presented masking
functions.

9.1.3 Multi-channel decomposition

Another key concept in modeling human visual perception is the decomposition of the input
image into multiple channels, tuned to specific characteristics like certain bands of spatial fre-
quency and orientation.Most important is typically the transformation of the spatial frequency
content into individual frequency bands, each normally spanning roughly one octave. One ap-
proach to accomplish this is to filter the input imagewith the difference of twoGaussians whose
spreads differ by a factor of two. More precisely, first a Gaussian stack is built, where each level
Gi results from the convolution of the image with a Gaussian, with the employed spread being
doubled every level. By subtracting two of these band-limited levels, a certain frequency band
of the image can then be extracted. A spatial frequency decomposition is hence obtained by
constructing a so-called Laplacian stack, where level i is computed from the Gaussian stack as
Gi −Gi+1.
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Figure 9.5 First levels of a Gaussian pyramid and the corresponding Laplacian pyramid.
Solely for visualization purposes, all levels were upsampled to the same size.
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An efficient approximate realization is the Laplacian pyramid [58], which maintains lower-
frequency levels at a reduced resolution. Initially, a Gaussian pyramid is constructed, where
the input image constitutes the finest level i = 0. Each next coarser level i + 1 is obtained by
filtering the preceding level i with a fixed-size Gaussian kernel and downsampling the result to
half its horizontal and vertical resolution. Note that this downsizing effectively corresponds to
a doubling of the Gaussian’s spread at the next level. The Laplacian pyramid’s level i is then de-
fined by the difference between level i and the appropriately upscaled level i+1 of the Gaussian
pyramid. An example of this multi-resolution representation is shown in Fig. 9.5.

Several further decomposition methods have been devised, often additionally providing
some orientation selectivity. Examples include simple Haar wavelets [41] and the sophisticated
cortex transform [396].

9.2 Vision models and visual difference metrics

Utilizing building blocks like the ones discussed in the previous section, complex visionmodels
have been devised which output a prediction of the visual system’s response to an input image.
By comparing the responses for two images, an estimate of the perceivable differences between
them can be derived. Apart from corresponding visual difference metrics, several others exist
which are not directly based on a computational vision model.

A well-known and quite complex metric designed for image fidelity assessments is Daly’s
visual differences predictor (VDP) [84, 85], which works solely on luminance values and re-
turns a map of detection probabilities.The underlying vision model incorporates an amplitude
non-linearity accounting for light adaptation, a filtering with an anisotropic CSF, as well as a
cortex-transform-based decomposition into 31 channels tuned to different spatial frequencies
and orientations. For visual masking, the threshold elevation function TD from (9.7) is utilized.
Note that the VDP’s application involves Fourier transformations, sincemost computations are
performed in frequency space. Targeting HDR images, Mantiuk et al. [248] later modified and
extended the metric, resulting in the so-called HDR VDP.

Another sophisticated metric is the Sarnoff visual discrimination model (VDM) [236],
which, unlike Daly’s VDP, operates entirely in the spatial domain. After an optics and a re-
sampling stage, a contrast pyramid is constructed and subjected to orientation filtering. Sub-
sequently, the energy responses are determined and weighted by a CSF, before the transducer
function TL from (9.8) is applied. Finally, a JND map is calculated, quantifying the predicted
differences in JND units. At least for small differences, these relate linearly to the perceived
difference magnitudes.

An evaluation [215, 216] of Daly’s VDP and the Sarnoff VDM suggests that both perform
rather well but also suffer fromproblems, with the Sarnoffmodel yielding slightly better results,
overall. Furthermore, it was noted that the Sarnoff VDM is faster. Nevertheless, even a GPU-
accelerated version reportedly takes more than one second for images of size 5122 on a (now
outdated) NVIDIA GeForce FX 5900 Ultra [401].

Bolin and Meyer [40, 41] simplify the Sarnoff model by using a Haar wavelet transform
for multi-channel decomposition, which significantly improves execution time but introduces
some blocking artifacts. Moreover, they extend the VDM to deal with color instead of just
luminance. In another variant of the Sarnoff VDM, Lindstrom [219] drops the orientation-
dependent processing completely. He further replaces the CSF by a TVI function to lift the
frequency dependency and hence decouple the results from the solid angle the images subtend
at a viewer’s eyes.
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A rather complex color vision model targeting primarily visual masking was introduced
by Ferwerda et al. [127]. It was successfully applied to assess the ability of textures of various
contrast, spatial frequency content and orientation to mask artifacts due to flat shading. Pat-
tanaik et al. [289] developed another quite complete vision model, which targets tone mapping
and hence accounts for a wide range of illumination levels as well as chromatic adaptation,
but doesn’t incorporate any orientation-dependent processing. Their model was later also ap-
plied as foundation of an image metric [119]. More recently, Tolhurst et al. [377] developed a
multi-scale color vision model for predicting the visual discriminability of two images. They
also extended their model [235] to yield a rating of how large a visible difference is perceived.

Further metrics, introduced mainly to control image synthesis, include Gaddipatti et al.’s
image comparisonmetric, based onDaubechies wavelets [134], and Farrugia et al.’s color image
metric [118], which restricts itself to single-scale processing for performance reasons. Interest-
ingly, an adaptive method is suggested where the image is decomposed via a quadtree and only
a representative number of pixels in each cell get compared. A rather different approach is
taken by Neumann et al. [268] who employ rectangles sized and distributed quasi-randomly.
The difference between two images is then computed as a CSF-weighted combination of the
average-color differences between corresponding rectangles in the images, using a modified
difference formula in CIELUV space (another perceptually roughly uniform color space simi-
lar to CIELAB).

Moreover, metrics exist which also take motion into account. Myszkowski et al. [264, 265],
for instance, devised an animation quality metric (AQM), which extends Daly’s VDP to the
temporal domain, incorporating the spatio-velocity CSF from (9.4). The same CSF is also em-
ployed by Yee et al. [409] in the computation of an error tolerance map, termed aleph map.

Threshold maps

A special variant of an image difference metric is a threshold map. It is derived from just one
image and specifies for each pixel the threshold below which (additive) changes in the pixel’s
value are predicted to go unnoticed. Hence, to determine whether two images can be discrim-
inated, their pixel-wise difference is computed and compared against the threshold map for
one of the images. Any differences are then assumed to be only perceivable at pixels where the
deviation between the images is above the according threshold.

Threshold maps were introduced by Ramasubramanian et al. [308], focusing on tolerable
luminance errors during image synthesis. At first, they construct a Gaussian pyramid with lev-
els Gi from the input luminance image, and then derive a contrast pyramid, where level i is
determined as (Gi −Gi+1)/Gi+2, upsampling coarser levels accordingly. For a certain pixel, the
luminance threshold

ΔL = 0.2 tviW(L) ⋅ S
is computed by modulating the threshold indicated by Ward et al.’s TVI function tviW from
(9.6) by a spatial threshold elevation factor

S = ∑i ci ⋅ Fi ⋅ TD(ci ⋅ csfB89(ρi , L))∑i ci
, (9.10)

which accounts for a reduction in sensitivity due to spatial frequency content and masking.
The adaptation luminance L may be taken from that Gaussian pyramid level where one pixel
roughly corresponds to one degree of visual angle. For S, summation occurs over all contrast



CHAPTER 9 Perceptually motivated rendering 185

pyramid levels, each representing a different spatial frequency band with peak frequency ρi .
The contrast from level i is denoted by ci , and

Fi = maxρ csfB89(ρ, 100 cd/m2)
csfB89(ρi , 100 cd/m2) (9.11)

quantifies the CSF-based threshold elevation relative to peak sensitivity, using Barten’s csfB89
from (9.1). Note that the computation of Fi ignores the actual adaptation luminance and con-
servatively assumes a value of 100 cd/m2, enabling precomputation.3

Several further methods to derive a pixel’s elevation factor S have been suggested. Walter
et al. [391], for instance, employ JPEG luminance quantization matrices to quickly determine
according elevation maps for textures. By contrast, Qu et al. [304] adopt the visual optimiza-
tion tools of the JPEG 2000 standard to this end. Moreover, Yee [408] devised a color variant
of threshold maps, which adds a final color comparison step but still performs the spatial pro-
cessing solely for the luminance channel. Reportedly, it was successfully employed for testing
of rendering software in the movie industry.

9.3 Overview of perceptually motivated applications

Many computer graphics algorithms exist which take some perceptual results into account. In
the following, we provide a brief overview of applications which harness vision models, visual
difference metrics or just some of the perceptually based building blocks covered in the pre-
ceding sections. Note that we solely focus on image synthesis and level-of-detail control and
generation, and hence don’t cover further domains where perception is exploited, like tone
mapping or attention-guided selective rendering. For a broader review of perceptually moti-
vated computer graphics applications, see, for instance, the report by O’Sullivan et al. [280].

Image synthesis

Many of the perceptually based difference metrics have been applied and often even primarily
been developed to speed up off-line realistic image synthesis systems. Here, even rather high
computational costs of ametric can easily amortize if the rendering process itself is quite expen-
sive and the resulting savings are large enough. In algorithms operating sample-wise, like path
tracing, computed difference or threshold values are typically employed as termination or re-
finement criterion. For example, Myszkowski et al. [263] use Daly’s VDP, Bolin andMeyer [40]
employ their variant of Sarnoff ’s VDM, and Ramasubramanian et al. [308] utilize their thresh-
old map towards this end. Moreover, motion-aware metrics are employed by Myszkowski et
al. [266] and Yee et al. [409] in global illumination computations for animation sequences.

Apart from image-space rendering systems, perceptual guidance was also employed for
view-independent radiosity solutions. Gibson andHubbold [137], for instance, utilize a simple
perceptually-based metric to drive adaptive patch refinement, reduce the number of rays in
occlusion testing, and optimize the resulting mesh. An overview of further radiosity methods
exploiting human perception is given by Přikryl [301].

3To avoid threshold overestimation for lower luminance levels, Fi is actually set to 1.0 if ρi < 4 cpd.
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Level-of-detail control

Numerous geometric LOD algorithms have been developed which try to take perception into
account during simplification or runtime LOD selection. In his extensive work, Reddy [310]
determines the perceptual attributes of each LOD by rendering it from various directions and
extracting the spatial frequency profile. To this end, a feature segmentation in image space
is performed, and the lowest frequency of each feature is determined. Note this approach is
supposedly rather inappropriate once complex shading is employed. During runtime, Reddy
then utilizes the frequency data along with information about an object’s size, velocity and
eccentricity to select the appropriate LOD.

Luebke and Hallen [238, 239] introduced a framework for interactive view-dependent tri-
angular model simplification where each simplification operation is mapped to a worst-case
estimate of induced contrast and spatial frequency. This estimate is then subjected to a sim-
ple, empirical CSF to determine whether the operation causes a visually detectable change. On
the down side, the approach assumes Gouraud shading and is overly conservative due to miss-
ing image-space information. However, subsequent work [400] tackles these shortcomings and
achieves several improvements, among them support for textures and dynamic lighting.

Aiming for the highest visual quality attainable within a given resource budget, Dumont
et al. [100] suggest a decision-theoretic framework where simple and efficient perceptually-
motivated metrics are evaluated on the fly to drive the selection of the resolution at which tex-
tures are uploaded. Since a texture’smasking properties are computed off-line and the approach
necessitates multiple rendering passes and a frame buffer readback to obtain image-space in-
formation, the applicability of the used perceptuallymotivatedmetrics for less restricted setups
is limited, though.

Finally, utilizing our GPU-based threshold maps (described in the next section), a percep-
tual rendering pipeline [98] was devisedwhich exploits inter-object, scene-level visualmasking
for LOD selection. It is covered in more detail in Sec. 9.5.

Level-of-detail generation

Perceptual considerations are also sometimes employed when generating levels of detail. In
their remeshing algorithm,Qu andMeyer [302] determine the perceptual properties of textures
with the Sarnoff VDM.These are then used to guide the local vertex density in the remeshing
result, thus trying to exploitmasking effects. However, since themetric evaluation is performed
in 2D texture space, it is unclear how well the spatial structure encountered there matches the
one in actual renderings, where the texture is applied to the model’s surface and hence can be
expected to appear distorted in the general case—especially in silhouette regions. The method
was later extended [303] to alternatively use a variant of the point-wise extendedmasking tech-
nique of JPEG 2000. Moreover, a mesh simplification algorithm is presented where for each
vertex an importance weight is derived from the predicted masking effects.

One approach which enables using perceptually based image metrics instead of geometric
measures to guide LOD generation was introduced by Lindstrom and Turk [220]. They sug-
gest driving the geometric simplification process of a model by the magnitude of deviations in
images rendered, from various viewpoints placed around themodel, before and after the appli-
cation of a certain simplification operation.4 While originally a simple L2 metric was utilized,

4Lindstrom andTurk use a fixed screen-space size for themodels regardless of their LODand adopt a headlight
illumination for each viewpoint, which is not really adequate. For instance, experimental results [317] suggest that
lighting variation should be taken into account during simplification.
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Lindstrom [219] later successfully employed his simple variant of the Sarnoff VDM.Moreover,
a related image-driven mesh optimization algorithm was developed by him.

9.4 Real-time threshold maps

Perceptually based image metrics often involve many computations due to modeling complex
procedures like a multi-channel decomposition and are hence rather expensive to evaluate. It
is therefore expedient to leverage the computational power of graphics hardware to accelerate
such metrics. Picking threshold maps (cf. Sec. 9.2) as a concrete example, we developed an
according GPU-based variant that allows rapid evaluation. Actually, our realization is so fast
that it is not only useful as a module within off-line algorithms, like for image synthesis and
LOD generation, but, in particular, also enables the on-the-fly computation of this metric in
real-time rendering.An according applicationwhich harnesses ourGPU-based thresholdmaps
for LOD control is described in the next section.

Given an input image, assumed to be in sRGB space, we initially compute the according
CIE Y luminance values, outputting them into a floating-point texture. With this luminance
image constituting the finest level, a Gaussian pyramid is subsequently determined and stored
in the texture’s mipmap chain. Each coarser level i + 1 is obtained by first filtering the pre-
ceding level i with a Gaussian kernel of size 5×5 and then bilinearly downsampling the result.
In the employed pixel shader, we actually perform both steps together, directly computing the
according linear combination of the involved 6×6 level-i texels. This requires merely nine tex-
ture fetches thanks to utilizing bilinear texture interpolation. More precisely, for each block of
2×2 texels, a single fetch is issued, choosing the sample point such that the resulting interpola-
tion weights for the texels match their relative contributions. Note that no special treatment is
necessary for images of non-power-of-two size, where the width or height of one mipmap level
is not always exactly twice as large as the next coarser one’s.

After that, we compute the luminance threshold in a single rendering pass. At first, the
adaptation luminance L is determined by sampling that level of the Gaussian pyramid where

(a) Using Gaussian pyramid (b) Using Gaussian stack

Figure 9.6 Example threshold map. Note the blocky artifacts that occur when directly sam-
pling the Gaussian pyramid.
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16-bit RTs 32-bit RTs
Resolution Pyramid Stack Pyramid Stack

512×512 0.24 ms 0.33 ms 0.26 ms 0.36 ms
1024×768 0.63 ms 0.76 ms 0.66 ms 0.85 ms
1024×1024 0.82 ms 0.98 ms 0.85 ms 1.10 ms
1600×1200 1.44 ms 1.72 ms 1.51 ms 1.94 ms

Table 9.1 Generation times for threshold maps of various sizes on an NVIDIA GeForce
GTX 280, using seven levels for the Gaussian pyramid. Note that the higher quality result-
ing from using a Gaussian stack instead of directly sampling the Gaussian pyramid incurs an
overhead of about 20% to 40%. On the other hand, a speed-up of up to 13% can be achieved
by using render targets (RTs) with a floating-point precision of just 16 instead of 32 bits.

one pixel covers roughly one degree of visual field. Subsequently, the spatial threshold elevation
factor S is computed according to (9.10). A look-up texture is employed to get the CSF values
csfB89(ρi , L), whereas the masking function TD is evaluated on the fly. Moreover, unlike in the
original formulation by Ramasubramanian et al. [308] in (9.11), we use the actual adaptation
luminance L for determining the CSF-based elevation factors Fi , again utilizing a (different
channel of the same) look-up texture. Finally, the TVI function is evaluated by consulting an-
other look-up texture, and the obtained threshold is multiplied with S.

Note that when a coarser level of the Gaussian pyramid is accessed, an implicit upsampling
to the finest-level resolution is performed via bilinear texture interpolation. While being ex-
tremely fast, this approach is not equivalent, however, to successively upsampling by one level
a time, which yields smoother results and does not suffer fromblocky artifacts. For higher qual-
ity, we hence optionally construct a Gaussian stack, stored in a texture array, from the Gaussian
pyramid and employ that during threshold computation. To this end, each pyramid level i ≥ 2
is successively upsampled to the next finer mipmap slice and ultimately to its respective slice
of the Gaussian stack. We actually maintain the stack only at the resolution of pyramid level
i = 1, thus exploiting hardware texture interpolation for the final upsampling step.

As demonstrated by the performance data listed in Table 9.1, our approach enables a rapid
threshold map computation, even for large input images and when using a Gaussian stack. In
particular, it is well suited to be incorporated in the per-frame workload of real-time rendering
applications. An example of computed threshold maps is shown in Fig. 9.6.

9.5 Interactive perceptual rendering pipeline

Recall that in real-time rendering, employing LOD techniques is often essential for achieving
a sufficiently high frame rate. Traditionally, the appropriate LOD for a certain object is deter-
mined based solely on information about this object, ignoring the potential influence of further
scene content. Such an approach is also pursued by the perceptually motivated control meth-
ods outlined in Sec. 9.3. However, larger savings in rendering effort are possible by accounting
for scene-level effects, like shadows and partial occlusion caused by complex objects such as
trees, fences or grids.These can strongly affect discriminability between two LODs of an object
and hence often allow significantly lowering the employed LOD without affecting perceived
rendering quality.
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Background

Figure 9.7 Decomposition of the example scene from Fig. 9.8 into separate layers.

A threshold map is an appropriate tool to capture such masking effects. In particular, using
our GPU-based variant covered in the preceding section, it can be derived at low costs. This
rapid evaluability enabled the development of a perceptual rendering pipeline [98] which actu-
ally takes interactions among scene objects into account. To this end, the scene is dynamically
decomposed into several layers, as exemplified in Fig. 9.7. While objects for which different
LODs are available get assigned to layers based on distance, all remaining scene content is put
into a special background layer. Each frame, the scene is at first rendered layer-wise, recording
the objects of a certain layer i in an according separate render target Oi . Moreover, a shadow
mask is stored for each layer, indicating the pixels where an object of this layer is shadowed by
objects from other layers. Then, for each non-background layer i, a combination of all other
layers’ Oj is computed, incorporating also layer i’s shadow mask. Note that this aggregation Ci
essentially represents the scene context for objects of layer i. To quantify the degree of masking
introduced by it, a threshold map TMi is subsequently derived for each such combination Ci .

This information is leveraged to control the employed LODs, aiming for selecting the coars-
est LOD which is predicted to be indistinguishable from a fine reference LOD. For an object
in level i, its reference LOD is rendered and compared against the currently used LOD, cap-
tured inOi . At each pixel where the object is visible, the determined difference between the two
LOD renderings is tested against the threshold map TMi , counting the number nvis of pixels
where the deviation is above threshold via an occlusion query. This quantity is then used to
decide whether to maintain, increase or decrease the employed LOD. Given two user-specified
threshold δl and δu, the next lower- or higher-quality LOD is adopted if nvis < δl or nvis > δu, re-
spectively. Note that each frame, only a subset of all objects is tested. An example of a resulting
LOD selection is shown in Fig. 9.8.

To verify that the adopted prediction of difference visibility between two LODs roughly
matches a viewer’s perception, a small user study was conducted, whose results indicate a rea-
sonably high correlation. This perceptually motivated pipeline for LOD control hence nicely
demonstrates the potential of both rapid GPU-based threshold map computations and of ex-
ploiting visual perception for scene-level optimizations. Note, however, that the approach suf-
fers from some shortcomings. Most prominently, the thresholds used for comparing the two
LODs of an object are derived from a rendering of the scene without this object (barring shad-
ows cast on it). Consequently, both the frequency content and the luminance levels assumed
when deriving the thresholds typically don’t accurately match the actually encountered ones.
Furthermore, temporal aspects of switching the LODare ignored.Not only is themethod prone
to causing popping artifacts, but it also does not take the influence of object motion on thresh-
old magnitude into account.
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0 6+
LOD

(a) Perceptually based LOD (b) Distance-based LOD

Figure 9.8 Example scene rendered using (a) the perceptual rendering pipeline for LOD
control and (b) alternatively a simple distance-based metric, with each approach resulting in
roughly the same frame rate. Note that the perceptually motivated variant maintains a higher
quality for well-visible statues in the back (like the one indicated by the arrow), enabled by
reducing the LOD for front objects where strong visual masking occurs.

9.6 Problems in applying perceptual results

Taking human visual perception into account is a worthwhile goal that promises to spend ren-
dering efforts wiser and hence to achieve a higher realism for a given time and resource budget.
On the other hand, as already hinted at throughout this chapter, several problems arise when
applying perceptual results.

One major issue that frequently limits their usage, especially in real-time rendering, is
that modeling perception introduces a certain overhead, which is often non-negligible. Con-
sequently, the gained savings must be large enough to at least amortize this extra cost. Coming
up with efficient and fast GPU-based realizations, like our threshold map variant, is hence one
significant step towards lowering the bar for applicability.

Another problem is that models of basic characteristics, like a CSF, result from certain iso-
lated experiments with simple stimuli under distinct artificial conditions. When adopting an
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engineering approach and just combining such potentially unrelated modules to construct a
more complex perceptual model, as is normally done, inconsistencies in the perceptual foun-
dation may thus easily arise. Note that due to the lack of according experimental data, this
situation is usually hardly avoidable. Furthermore, it is unclear how well the models general-
ize to conditions and stimuli beyond the ones covered in the underlying data. In particular,
complex patterns may result in stronger masking effects than observed with superpositions of
simple gratings. Therefore, predicted detection thresholds may be way too conservative.

While graphics algorithms strive for exact visibility statements about deviations, a universal
point of change in detectability does not exist, thanks to inter- and intra-viewer variations.
Hence, recall that established perceptual thresholds only correspond to a certain probability of
detection. Moreover, such thresholds depend on the actual viewing setup. Note, for instance,
that the absolute spatial frequencies of an image are a function of viewer distance. Although
such parameters can be controlled during an experiment, it is typically impractical to determine
and specify them accurately in real-world applications, generally forcing some conservative
approximations.

Warning examples

Issues like these often make it hard to verify whether perceptual results are correctly applied.
Consequently, observed improvements attributed to following perceptual principles may actu-
ally turn out to lack such a foundation. For instance, in his threshold map variant, Yee [408]
computes a Gaussian stack exactly like a Gaussian pyramid but without downsampling, i.e.
level i results from successively applying a fixed-size Gaussian kernel for i times to the finest
level.This, however, is not even roughly equivalent to doubling theGaussian’s spread each level.
As a consequence, the corresponding Laplacian stack exhibits a severely different frequency se-
lectivity than usual. Nevertheless, Yee assumes the peak frequencies of an ordinary Laplacian
stack when evaluating the CSF and hence wrongly applies perceptual results. Despite this defi-
ciency, the metric was reportedly used successfully in the movie industry.5

Another example where a realization mishap occurred is the threshold map implementa-
tion by Ramasubramanian et al. [307, 308]. They intend to determine the luminance level for
the TVI function at a certain pixel by averaging pixel values from a neighborhood covering
one degree of visual angle. To this end, a formula fromWard et al. [394] is applied which for a
given field of view yields the resolution of an image where one pixel subtends one degree. How-
ever, they actually take this quantity as size of the averaging filter kernel, which in their setup
causes the luminance level to be determined from a region covering significantly less than one
degree. Note that this effect is quite noticeable in the published visualization examples of the
TVI thresholds, where blurring is decidedly too weak.

Perceptual results can also easily become void bymisinterpreting their specification, which
may be hard to discover. As an example, when adopting Kelly’s CSF [183] from (9.3), which is
originally given in terms of a parameter α = 2πρ rather than of spatial frequency ρ, Reddy [240,
310] confused α with ρ, thus dropping the factor of 2π. Commendably, he noticed that the
resulting expression does not match the published data. To alleviate this, Reddy modified the
formula accordingly, essentially reintroducing the omitted factor of 2π.

Finally, trying to model some perceptual phenomenon but doing so poorly can yield worse
results than not accounting for it at all. For instance, theNayatani color appearancemodel [112]

5Our own test using the publicly available implementation (http://pdiff.sourceforge.net/) was a complete fail-
ure, though.
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is able to predict both the Stevens and the Hunt effect, i.e. a gain in brightness and chromatic
contrast, respectively, with increasing luminance.However, Fairchild [112] reports that for data
sets testing these effects the Nayatani model only performs as good as or even worse than sim-
pler models which don’t account for the effects at all.



CHAPTER 10

Visual popping

In real-time rendering, level-of-detail techniques are prominently used and often prove central
to achieve high frame rates. However, adapting an entity’s LODmay not go unnoticed and give
rise to visual popping artifacts.This is highly problematic because their occurrence can severely
degrade the perceived degree of realism. While approaches exist for several LOD schemes to
alleviate popping artifacts or even to suppress them by conservatively selecting the employed
LOD, they are ignorant of the actual perceptibility of these artifacts. It is hence desirable for
LOD control algorithms to be able to infer whether an envisaged change in LOD can be per-
ceived or not, and also as how disturbing such a switch appears. An important step towards
this ideal is a perceptually based metric which predicts the occurrence of popping, indicating
its perceived magnitude.

In this chapter, we present a first solution [339] towards the elusive goal of devising such
a predictor. After initially reviewing popping and related approaches employed to deal with
it, we discuss several aspects affecting popping perception, pointing out its complexity. Subse-
quently, a practical perceptually motivated predictor for popping artifacts is introduced, which
tackles some of the involved issues. Leveraging several simplifying assumptions, it makes heavy
use of a spatio-velocity color vision model and condenses the model output in a meaningful
way, yielding popping regions (see Fig. 10.1). Examples demonstrating the predictor’s concrete
application are presented, too. Finally, we describe a user study comprising two experiments
which was conducted to evaluate the predictor’s performance.The results indicate that our ap-
proach makes predictions which are well in line with the subjects’ perception.

10.1 Popping and related treatment approaches

When rendering dynamic scenes and hence the image content changes over time, several arti-
facts can arise in the temporal domain. Apart from aliasing and its most disturbing manifesta-
tion, flickering, many of these artifacts are due to popping. Popping occurs if the renderer uses
two different representations or parameter sets, referred to as levels of detail (cf. Sec. 2.4), for at
least one scene entity in two consecutive frames and this results in an abrupt change that gets
noticed by the user. Often, such switches are adaptations of an object’s geometric LOD, which
in general not only influences outer and inner silhouettes but also shading. Popping may also
be caused by transitioning from a geometric to an image-based or a point-based representation
and vice versa, or by updating an impostor once parallax error or sampling density mismatch
exceeds a respective threshold [327]. Other examples comprise changing the complexity of
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(a) Frame i − 1, LOD j (b) Frame i, LOD j − 1 (c) Predicted popping regions

Figure 10.1 When an object is moving and the employed LOD changes, some screen regions
may exhibit popping of various severities. For instance, two consecutive frames of an approach-
ing bunny using different geometric LODs are shown (a, b). Popping occurs, among others, in
the zoomed-in region. Our perceptually motivated predictor, detailed in Sec. 10.3, identifies
such regions suffering from popping artifacts (c).

employed shaders and picking a different set of virtual point lights for approximating indirect
illumination.

Many techniques have evolved over time to avoid popping or at least alleviate its severity.
One class combats popping by smoothing the transition over several frames, with image-space
blending [139] and geomorphing [164] being the most notable approaches. On the downside,
however, they introduce additional overhead, often countering themotivation for changing the
LOD, increasing performance. Even more problematic, these approaches may cause the tran-
sition itself or some of its intermediate states to be perceived as unnatural or even disturbing,
essentially trading one problem for a different one.

Another well-adopted option is to utilize a deviation metric and only switch LOD if the
predicted deviation stays below a threshold considered acceptable. For geometric LOD, many
of these metrics operate on bounds derived in object space and then project them into screen
space.The resulting error bound is often considered appropriate in order to avoid popping if it is
at most half a pixel. Examples include the texture deviation metric [77] for mesh simplification
and the geometric approximation error for adaptive tessellation of higher-order surfaces (see
Sec. 7.4.2). Most of these metrics only consider an object’s geometry and basically ignore its
surface signal. Consequently, they may be too conservative because, for instance, even a large
texture-space distortion often remains imperceptible if the texture is uniformly colored or in
shadow. On the other hand, small changes in geometry may result in major shading variations,
like jumping or vanishing highlights.

To overcome some of these shortcomings, several researchers suggested metrics motivated
by perceptual considerations (cf. Sec. 9.3). For instance, the contrast and the change in spa-
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tial frequency content induced by a geometric LOD change were employed to predict visual
detectability, also accounting for texture content [400]. Using a more involved and computa-
tionally expensive vision model, the visual masking potential of an object’s surface signal may
additionally be regarded [302]. Unfortunately, such approaches mainly target best-effort sim-
plification and don’t directly account for popping. On the other hand, Hamill et al. [153] con-
ducted psychophysical experiments for models of buildings and humans, deriving thresholds
for the pixel-to-texel ratio at which a change from impostor to geometric representation can
be carried out without (disturbing) popping.

In most cases, a LOD switch potentially causing popping is executed because the affected
scene entity is moving relative to the viewer. Depending on how fast and in which direction
an entity moves, the perceptibility of the LOD change it is subjected to can significantly differ.
However, this temporal aspect of popping is basically ignored by all metrics for choosing an
appropriate LOD. Although few approaches exist which take object movement into account
to select coarser geometric LODs for fast-moving objects [310], they don’t consider the switch
among two LODs.

Because of the practical importance of popping and the absence of reliable solutions which
are not over-conservative, there is a certain need for a perceptually based computational model
for predictingwhether andwhere popping occurs in dynamic scenes. One potential application
is the derivation of optimal LOD transition points for prerecorded paths in walk-through and
fly-over scenarios. Moreover, such an automatic metric may serve as oracle when optimizing
parameters or testing LOD schemes. It could also help identifying screen regions where pop-
ping is likely to be perceivable. Note, however, that it is not suitable for a per-frame on-the-fly
application to guide LOD selection in real-time rendering settings. This is due to the overhead
entailed by a perceptually motivated metric that operates in image space to account for the ex-
act context. It hence necessarily requires, among others, a rendering of the current frame using
the considered new LOD. Consequently, if the LOD is eventually not changed because it would
evoke popping deemed too severe, the scene must actually be rendered a second time for the
same frame. Even ignoring further overhead, this already imposes an often unacceptable cost
for real-time rendering, countering the hoped-for gain in efficiency by using a coarser LOD.

We developed such a perceptually motivated (off-line) predictor for popping artifacts. Be-
fore presenting it in Sec. 10.3, we first review and discuss several aspects involved in perceiving
popping in the next section, highlighting the complexity of this phenomenon andwhy a reliable
prediction is extremely hard to achieve.

10.2 Aspects of perceiving popping

The perception of popping turns out to be a very complex phenomenon that is influenced by
several factors, many of which are far from being completely understood. In general, popping
is perceived if a temporal discontinuity in the image signal occurs that is large enough to be
captured by the human visual system and that is then actually detected by the viewer.

Consequently, attention plays a significant role in perceiving popping. Even strong pop-
ping may go unnoticed if the viewer’s attention is not directed towards the region where it
occurs. There is experimental evidence [330] that in case a moving object is pursued, the at-
tention is both focused on this target and its movement direction, causing a loss of sensitivity
for both peripheral objects andmotion opposite to the pursuit direction. Popping itself may be
highly salient and hence attract attention; however, this is mainly true for large-scale popping
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involving multi-pixel geometric deviations, which can usually easily be identified by classic
non-perceptual metrics. Recall from Sec. 8.4 that while computational models for visual atten-
tion exist, incorporating the viewer’s experiences and identifying and modeling her adopted
task remains a challenge.

Motion perception involves higher-level visual mechanisms and depends partly on more
abstract image features like surfaces and objects [393]. Motion introduces some spatial uncer-
tainty about the future location of such features and may also occlude and reveal scene ele-
ments, which constitutes another source of uncertainty. Moreover, the HVS has only limited
resources and hence each of its receptive fields is sensitive to a range of spatial and temporal
frequencies, causing an uncertainty in measuring spatio-temporal signals [136]. Spatial and
temporal integration is performed, i.e. each receptive field computes a kind of weighted aver-
age of local image signals over a small space-time region, effectively causing a blurring [393].
When the motion flow field is processed, these uncertainties are factored in and the higher-
level feature information is taken into account and gets updated. In case of inconsistencies of
or temporal discontinuities in the flow field, popping may be detected.

Concerning vision, the sensitivity of contrast detection and discrimination shows both
intra- and inter-observer variations and degrades with age [156]. Hence, like with most per-
ception-based aspects, a perfect prediction that applies to everybody is impossible. Only if the
sensitivity is high enough, a luminance change or a chromatic shift due to popping can be
noticed. Regarding modeling this sensitivity, the higher the desired accuracy, the more depen-
dencies have to be considered. However, too many parameters make a model hard to apply, as
several parameter values are difficult to provide. Moreover, experimental data is usually only
acquired for a small number of parameters (cf. also Sec. 9.6).

Other artifacts, like aliasing and in particular flickering, can also influence the perception
of popping. Not only may they attract the viewer’s attention and hence divert it from a region
where popping occurs, but they may also mask the actual popping.That is, despite noticing the
popping, it is not perceived as popping but attributed to another artifact.

Finally, the display device impacts popping perception. Most notably, the now ubiquitous
LCD displays typically suffer from motion blur, mainly because of the employed sample-and-
hold technique but also due to their response times [286]. While techniques like flashing back-
lights are able to alleviate this problem [121], they are not widely utilized yet. Other display
characteristics, like the chosen white level, as well as light reflected off of the screen influence
visual sensitivity, thus affecting the perceptibility of popping artifacts, too.

10.3 Perceptually motivated popping predictor

Considering all the factors involved in popping perception, an accurate prediction appears to
be a goal extremely hard to attain. In particular, higher-level mechanisms play an important
role but are challenging to account for. While their influence might be modeled in general,
doing so reliably at the pixel level essentially is an open problem, presumably requiring a lot of
further vision research.

To make the prediction task more tractable, we hence introduce several simplifying as-
sumptions. Most notably, we ignore temporal integration and consider only the single frame
where the popping-prone switch of LOD occurs. To detect temporal discontinuities, we com-
pare the actually rendered frame against a prediction of what the user might expect for this
frame by means of a vision model. Differences above a certain magnitude then indicate pop-
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Figure 10.2 Overview of the perceptually motivated popping predictor.

ping. The predicted frame content is obtained by rendering the frame again but utilizing the
previous LOD. We hence assume that this way of extrapolating the image content and motion
of the previous frames is a good enough approximation for identifying perceived temporal dis-
continuities resulting in popping artifacts.

10.3.1 Overview

An overview of our predictor is shown in Fig. 10.2. As input, both the actually rendered frame
and the predicted frame are provided. Each frame input comprises a color image in sRGB space
and a map storing the screen-space displacement of each pixel center with respect to the pre-
vious frame. The frame data is subjected to a color vision model, detailed in Sec. 10.3.3, which
takes retinal velocity derived from the pixel displacement into account. The model outputs a
contrast response pyramid, with its levels corresponding to the spatial frequency decompo-
sition performed by the vision model. Next, the pixel-wise difference between the two input
frames’ response pyramids is determined across levels and color channels, yielding a difference
map. During its computation, additionally provided input for down-weighting differences, like
the previous-frame visibility of each pixel, which allows identifying disoccluded pixels, is pro-
cessed. Finally, connected regions where popping may be perceived, referred to as popping re-
gions, are extracted. The whole model output aggregation scheme and its predictive utility are
further elaborated on in Sec. 10.3.4.

10.3.2 Discussion

Although higher-level visual mechanisms are not explicitly modeled due to their complexity,
the rather simple approach of comparing the actual with the predicted frame accounts for them
to a certain degree by indirectly factoring in shape and shading information. Nevertheless, our
approach is clearly not appropriate in all cases. For instance, regarding impostor updates, using
the previous impostor texture usually doesn’t correspond to the user’s expectation of how the
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previous frame evolved; in contrast, it will probably be a worse match than the new impostor
texture due to its larger distortion. On the other hand, transitions from one geometric LOD to
another one are rather well captured by our approximation. We believe that while such LOD
switches which are amenable to our approach constitute only a subset of all popping-prone
LOD changes, they still form a large class of practical importance.

Since we are not modeling most of the uncertainty involved in motion perception, our
predictor is slightly too conservative and sometimes wrongly reports a temporal discontinuity
which actually gets smoothed out by the visual system. For instance, imagine an object with a
curved horizontal silhouette that is approaching the viewer, where every few frames the number
of pixels in a scan line covered by the silhouette increases. If this increase is postponed by one
frame, often no popping is perceived, while the comparison of our input frames may suggest a
popping artifact.

Even though attention is of high importance for perceiving popping, we are not accounting
for it. Our algorithm just outputs screen regions where popping is predicted to be perceptible
if attention is directed towards them. Note, however, that in principle these regions can easily
be checked against the output of a computational attention model. Similarly, we refrain from
regardingmotion blur inherent to LCDdisplays, whichmay lead to some erroneously predicted
popping artifacts.

10.3.3 Spatio-velocity color vision model

A computational vision model processes the visual input and yields a response that scales
roughly with the perceptibility of the visual contrast stimuli. By comparing the responses for
two different inputs, visual differences can be determined. As reviewed in Sec. 9.2, a multitude
of vision models have been developed for static images, operating either only on luminance
[85, 236] or also on color [41, 235, 289]. Some models for dynamic images which in addition
to luminance (but not color) take motion speed into account were also devised [264, 409]. Our
vision model is influenced by these approaches and extends them as required by our problem
domain, while being comparably cheap to execute.

As input, themodel expects a color image in sRGB space aswell as a pixel displacementmap.
First, the color image is converted to absolute CIE XYZ tristimulus values, taking the display’s
black andwhite level luminances into account.Then, a transformation toHunt-Pointer-Estévez
cone responses1 is performed [112]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Next, we construct a Gaussian pyramid (cf. Sec. 9.1.3) with levels Gi , utilizing a binomial fil-
ter kernel of size 5×5. From this, a contrast pyramid is built which stores local band-limited
contrast [236], i.e. level i is computed as (Gi − Gi+1)/Gi+2, where coarser levels are appro-
priately upsampled. Subsequently, the contrast values are converted to Hunt’s opponent color
space [112]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1These correspond to one of the several existing estimates of the cones’ spectral responsivities.
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A represents the achromatic response; a and b correspond to the red–green and yellow–blue
opponent signals, respectively.

The contrast pyramid is then normalized by multiplication with the spatio-velocity CSF.
Since sensitivity for fast-moving contrast stimuli is often lower than for static ones, this stage
accounts for the observation that visual differences leading to popping artifacts are usually
harder to spot for moving objects. The employed CSFs, which are further detailed below, de-
pend on the spatial frequency ρ, the retinal velocity v, and the local adaptation luminance L.
For each contrast pyramid level, which essentially represents a spatial frequency band, we take
its peak frequency for ρ. The raw velocity vs is computed from the input pixel displacement
map, using parameters of the viewing setup like viewing distance, screen size and resolution.
It is then subjected to Daly’s model [86] of unconstrained eye movements, which accounts for
the eye’s tracking behavior, to obtain a conservative estimate of the retinal velocity:

v = ∣vs −min{0.82 vs + 0.15 deg/s, 80.0 deg/s}∣.
Recall that due to drift eye movements, the minimum retinal velocity is in general non-zero.
Finally, the adaptation luminance is derived from the Gaussian pyramid level where one pixel
roughly corresponds to one degree of visual field.

In a last step, we account for visual masking by applying the transducer function T from
(9.9) to the normalized contrast values. Note that T converges to a simple power law for sub-
Weber behavior2 at suprathreshold contrast levels [212].

Regarding calibration, vision models are usually applied for predicting visual differences
among input images shown side by side, whereas in our scenario differences are to be identified
when switching between two frames, thus leading to much lower detectability thresholds. We
adopted values of 0.5%, 1.0% and 1.2% for the peak contrast sensitivities of the channels A, a,
and b, respectively.

Achromatic CSF

For the achromatic channel A, we employ Daly’s spatio-velocity CSF from (9.4). As shown
in Fig. 10.3, for increasing velocities the CSF’s band-pass shape moves towards lower spatial
frequencies and the peak sensitivity eventually drops.

Recall that the CSF doesn’t directly model the dependence on the adaptation luminance
level L, but merely features three parameters ci for fine-tuning, where Daly suggests setting
c0 = 1.14, c1 = 0.67 and c2 = 1.7 for L = 100 cd/m2. To remedy this, we make both the peak
sensitivity scale factor

c0(L) = 1.14 ⋅ maxρ csfB03(ρ, L,A)
maxρ csfB03(ρ, 100 cd/m2,A)

and the spatial frequency scale factor

c1(L) = 0.67 ⋅ argmaxρ csfB03(ρ, 100 cd/m2,A)
argmaxρ csfB03(ρ, L,A) ,

which controls the shift of peak sensitivity along the frequency axis, a function of L by utilizing
Barten’s spatial CSF csfB03(ρ, L,A) from (9.2).

2That is, the output compressed contrast rises slower than if Weber’s law applied.



200 10.3 Perceptually motivated popping predictor

1
1

0.1

10

100

10

Spatial frequency

(cpd)

S
e

n
si

ti
v

it
y

Velocity

(deg/s)

100 Spatial frequency (cpd)

V
e

lo
ci

ty
(d

eg
/s

)

0.1

0.1

1

10

100

1 10

Figure 10.3 Achromatic spatio-velocity CSF at adaptation luminance level L = 100 cd/m2.

Chromatic CSF

For both chromatic channels a and b, we adopt Kelly’s CSF from (9.5).With increasing velocity,
its low-pass nature becomes more pronounced and its peak sensitivity rises, as depicted in
Fig. 10.4.

Again, the CSF doesn’t model dependence on the luminance level. However, experiments
indicate that the threshold contrast decreases inversely proportionally to the square root of the
retinal illuminance [381], with retinal illuminance being related to luminance by the pupil’s
area. To be consistent with the assumptions in Barten’s luminance CSF, used to adapt the achro-
matic CSF to varying light levels, we compute the pupil’s diameter by Le Grand’s approxima-
tion [208]:

d(L) = 5 − 3 tanh(0.4 log10 L).
The chromatic CSF is then scaled by the square root of the ratio of the retinal illuminances
corresponding to L and the reference luminance (roughly 35 cd/m2).

Contrast pyramid levels

Each level of the contrast pyramid is tuned to a certain band of spatial frequencies, which re-
sults from subtracting two band-limited levels of theGaussian pyramid. Note, however, that the
repeated filtering with a fixed-size Gaussian and downsampling does not exactly yield the fre-
quency response of Gaussian filtering with a spread being doubled every level. Therefore, and
especially because the finest level of the Gaussian pyramid is only band-limited by the sam-
pling frequency, the common assumption that the peak frequencies of the contrast pyramid
levels halve with every coarser level is not true. Most notably, the finest level’s peak frequency
is almost four times as high as that of the second-finest level. In our implementation, we ac-
count for both this irregularity as well as the amplitude loss due to filtering. We choose the
number of levels such that the coarsest level has a peak frequency of at least 0.5 cpd, which
results in a five-level contrast pyramid for our viewing setup.
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Figure 10.4 Chromatic spatio-velocity CSF.

10.3.4 Popping regions

For both the actual and the predicted frame, the vision model yields a contrast response pyra-
mid. To derive visual differences, we subtract these pyramids and collapse the resulting differ-
ence pyramid, combining differences across levels and channels (A, a, b) by Minkowski sum-
mation with an exponent of 2.4 [236, 397].The obtained differencemap indicates for each pixel
the probability of being able to detect a difference in units of JNDs.

Recall that factors like disocclusion introduce uncertainty and hence differences between
the actual frame and its prediction that occur at pixels affected by such uncertainties are less
likely to be detected. To account for this, we take a practical approach and scale down the
corresponding values in the difference map by weights provided as additional input to our
predictor. For instance, the previous-frame visibility of the current frame’s pixel centers may
constitute one such weight.

While a difference map is of certain utility itself, the contained information should be ag-
gregated in a meaningful way for further analysis. Standard measures like number of pixel
differences above threshold, maximum difference, average and variance are usually of limited
use because they are too coarse-grained. We hence adopt a different approach, which is based
on the observation that not only difference magnitude but also spatial context is important for
detection [44]. Intuitively, even smaller visual differences may be easily detected if the affected
pixels are clustered together and cover a larger screen region. On the other hand, if a visual
difference occurs at an isolated pixel, its magnitude must be rather large to spot the difference.

To model this, we first identify all pixels where the two input color images differ and the
visual difference map reports a value of at least 2 JNDs. We then start growing regions around
these seed pixels, successively considering all eight direct neighbor pixels and including those
with visual difference values of again at least 2 JNDs. The empirically chosen threshold of
2 JNDs accounts for the fact that differences are harder to detect in complex images than in
case of simple gratings (typically employed in vision experiments for determining sensitiv-
ity). This procedure finally yields a number of popping regions, identifying those parts of the
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Figure 10.5 Thepopping predictor applied to a concrete example. From the visual difference
map, more meaningful popping regions are extracted.

image where popping artifacts can be expected. For each region, we acquire statistics, like its
size in number of pixels, and determine the Minkowski sum (with an exponent of 2.4) of the
visual difference values at its pixels. The magnitude of this sum is a good indicator of how se-
vere popping occurs in the region. If we further subject it to the empirically derived mapping
R(Σ) = ln(0.375Σ)/ ln(2.25), we obtain a simple rating R, where values of R < 1 predict rarely
visible popping and R > 3 suggests easily detectable popping.

An in-context visualization of the popping regions colored according to their rating val-
ues (see Fig. 10.5 for an example) allows fast identification of where popping artifacts of which
degree can be expected.Moreover, the popping region information is well suited for further au-
tomatic processing. For instance, given a screen region of high importance, possibly provided
by a computational attention model, it could be checked whether any popping regions are lo-
cated in this screen region and, if so, how many pixels they cover and what their ratings are.
Based on this, an informed decision whether the potential popping artifacts can be considered
acceptable or not for the given application can automatically be made.

Fig. 10.5 shows a concrete example. Please recall that differences are harder to spot when
viewing images side by side. Thanks to the selective aggregation performed, popping regions
are a useful tool for analyzing the visual difference map and for identifying and rating popping
artifacts.Moreover, note that the visual differences’magnitude is clearly affected by fastmotion.

10.3.5 Examples

We applied our popping predictor to two different examples, chosen to be representative of
possible real-world applications: an object-wise geometric LOD and a simple terrain LOD (see
Fig. 10.6). In the first example, we constructed coarser concrete LODs via the progressive mesh
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(a) Object-wise geometric LOD (b) Terrain LOD

Figure 10.6 Screenshots of two examples to which we applied our predictor.

implementation of Direct3D 9 and manually specified distances at which to switch LODs. To
obtain the required input for our predictor, we render the frame in question twice, once with
the new and once with the previous LOD. Apart from the pixel color, we further derive for each
fragment the previous-frame screen location of its corresponding point and store the resulting
screen-space displacement. To account for disocclusion, for both of the involved LODs we de-
termine the depth map for the previous frame setting and perform a depth comparison with
percentage-closer filtering to derive a real-valued previous-frame visibility factor per pixel. Fi-
nally, being conservative, we take the pixel-wise maximum of these factors and provide the
resulting weight map as further input to the predictor.

For the terrain application, we adopted a simple chunk LODapproach [380], where coarser-
level terrain tiles are generated by regular subsampling. LOD switches are controlled by the
screen-projected maximum height deviation from the finest-level terrain geometry. For shad-
ing, we resort to ambient aperture lighting [275], which allows easy adaptation to various times
of day and hence sun positions.The input data for our popping predictor is obtained like in the
first example.

However, since terrain fly-overs often suffer from strong flickeringmainly at distant moun-
tain ranges that can mask popping, we additionally incorporate a map for weighting down vi-
sual differences in flicker-affected regions. To detect flickering, we resort to a simple heuristic.
For each pixel, we compute its shading for the previous-frame setup and compare it against
the color obtained by sampling the previous frame’s color image, taking depth discontinuities
into account. If these two colors have a CIELAB ΔE∗94 difference value (computed using the
CIE94 formula [112]) that is roughly as large as or even larger than the color difference be-
tween the two LOD renderings of the current frame, we assume flickering to occur, unless the
pixel’s inter-frame screen-space displacement is large.

10.4 User study

Given the simplifying assumptions and empirical choices made, we considered it important to
conduct a user study to investigate the plausibility of our approach and its predictions. How-
ever, experimental validation turns out to be challenging for multiple reasons. In practice, a
LOD change usually results in several popping regions. But because popping occurs at a single
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(a) Tessellation factor 2 (b) Tessellation factor 3 (c) Tessellation factor 9

Figure 10.7 The three LODs of the patch employed in the first experiment. The arrow indi-
cates the tip to which the subject is asked to attend.

point in time, a subject can only spot and attend to at most one region (or maybe a few small
and closely clustered ones), but misses processing all the other ones. Moreover, it is hard to
determine where a subject directed its attention to. On the other hand, attention can only be
guided to a certain degree and accuracy, especially in case of complex stimuli. Consequently,
validating all predicted popping regions directly in ecological settings is an elusive task.

Another major obstacle is the huge space of possible LOD transitions that could result in
popping, and its high dimensionality. In particular, perceptibility of popping artifacts is influ-
enced by the involved objects (shape and its complexity, material), their environment (lighting,
complexity), the LODs used, the chosen transition point (e.g. certain distance), and the kind,
direction and speed of the object’s movement relative to the camera. Therefore, any test neces-
sarily has to concentrate on few samples of the LOD transition space.

We address these challenges by two different experiments. In the first one (Sec. 10.4.1), we
seek to directly evaluate the predictive power of single popping regions. To this end, we focus
on a simple object that allows directing a participant’s attention to a specific region. Testing
all combinations of two LOD sets, multiple transition points and two movement speeds while
fixing all other degrees of possible variation, we densely sample a small subspace of all LOD
transitions. In contrast, the second experiment (Sec. 10.4.2) deals with a larger subspace of the
LOD transition space, but samples it only sparsely. Utilizing our two example applications, it
also considers more natural and complex situations. Since attention cannot really be controlled
in the setup, no validation of single popping regions is possible this time. Instead, an indirect
evaluation of the overall prediction of all popping regions is performed.

10.4.1 Experiment I: direct evaluation with simple object

For the first experiment, we adapted our geometric LOD example, using a simple bicubic B-
spline patch (see Fig. 10.7) instead of a mesh. Different LODs are obtained by varying the tes-
sellation level. Normals are computed per pixel by directly evaluating the patch’s derivatives.
We show 4.5-second sequences of the camera approaching the patch, during each of which the
LOD is changed exactly once. Two LOD sets (tessellation factor 2→ 3 and 3→ 9) and seven
distances at which the LOD is switched are considered. In addition to showing these scenarios
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as an animation (dynamic case), we also present just the frame where the LOD transition oc-
curs, initially with the old and then with the new LOD (static case). Each sequence is shown
three times, as well as one extra time without any change in LOD to verify that a subject indeed
perceives popping and is not giving random answers.

The stimuli are presented on a dark-grey background in the central 1024×768 region of
a 20" FSC P20-2 LCD display with a resolution of 1600×1200. The participant, being sat at a
viewing distance of 60 cm, is instructed to attend to the tip of the patch. After each sequence, he
is asked whether popping was noticed. In total, 112 sequences are presented in random order,
with the dynamic scenarios preceding the static ones; a whole session lasts less than 20minutes.
To make the subject familiar with the task and the voting interface, an exercise session is run
before the actual experiment.

Eight subjectswith normal or corrected-to-normal vision, all of themmembers of theCom-
puter Graphics Group of the University of Erlangen-Nuremberg, participated in the exper-
iment. The mean of the subjects’ average popping detection rates is 67.71% (stdev: 12.01%)
when LOD switches occurred but only 4.46% (4.58%) in absence of a LOD transition (and
hence popping), indicating the plausibility of the answers. A repeated-measures ANOVA ap-
plied to the cases where the LOD was changed shows a main effect of the employed LOD set
(F(1, 7) = 98.926; p < 0.0001) and of the switch distance (F(6, 42) = 30.226; p < 0.0001), as
well as an interaction of these two factors (F(6, 42) = 3.139; p = 0.012). Moreover, there is also
a main effect of whether the stimulus is static or dynamic (F(1, 7) = 29.377; p < 0.001).

To evaluate our predictor, we consider the single popping region at the tip of the patch.
For the static case, this region’s rating value R shows an almost monotonic relationship with
the average popping detection rate (cf. Fig. 10.8). This is also reflected in a high Kendall rank
correlation coefficient3 τc = 0.933. To compute the Pearson product-moment correlation coef-
ficient4 r, we first clamp R to the lowest value where a 100% detection performance is encoun-
tered, accounting for the detection rate’s upper bound of 100%.The value of r = 0.915 indicates
a rather highly linear relationship.

As a sanity check, a comparison with another metric’s performance is desirable. In partic-
ular, it is advisable to test whether the complexity of the predictor is justified and the obtained
results are really superior compared to those of a much simpler and cheaper approach. How-
ever, being not aware of any alternative popping predictor, the best we can do is to adopt our
approach of comparing the actual framewith its prediction using the previous LODand employ
some image-space metric to compute their difference. Unfortunately, it is also not obvious how
to reasonably aggregate such a metric’s pixel-wise output. Therefore, opting for simplicity, we
chose the maximum CIELAB ΔE∗94 difference value. It shows a weaker correlation (τc = 0.723,
r = 0.806) to the subjects’ average detection rate. In particular, unlike our predictor, this metric
only reasonably orders scenarios which use the same LOD set but fails to correctly rank them
across LOD sets (cf. Fig. 10.8).

In the dynamic case, our predictor’s output still shows a high correlation to the average de-
tection rate (τc = 0.808, r = 0.932). It also performs far better than maximum CIELAB ΔE∗94
(τc = 0.561, r = 0.747), which doesn’t account for object motion. Compared to the static case,

3A rank correlation coefficient is a statistical measure, which quantifies the association between two rankings
of the same data set. In our case, these rankings result from sorting the scenarios in ascending order according to
rating R and to detection rate, respectively. A value of one indicates perfect agreement among the two rankings,
while zero corresponds to complete independence.

4It measures the strength of linear relationship between two interval-scaled quantities X and Y , where r = 1
means that Y is a linear function of X, and r = 0 indicates lack of any correlation.
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Figure 10.8 Average observed popping detection rate in the first experiment as a function of
(a) the predictor’s rating R, and of (b) the maximum CIELAB ΔE∗94 value.

however, our predictor slightly overestimates the subjects’ detection performance.We partially
attribute this to attentional effects; tracking of the patch’s tip has to be performed, which com-
plicates focusing attention. Also, LCD motion blur, which we don’t account for, might lower
the perceptibility. Nevertheless, when considering both static and dynamic cases together, cor-
relation is still reasonably high (τc = 0.790, r = 0.902), and better than in case of maximum
CIELAB ΔE∗94 (τc = 0.589, r = 0.786).
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10.4.2 Experiment II: indirect evaluation with real-world examples

In the second experiment, we show four-second sequences of the two example applications (cf.
Sec. 10.3.5), where exactly one LOD switch occurs in each. Unless otherwise noted, we use the
same setup and procedure as in the first experiment. Twelve subjects with normal or corrected-
to-normal vision, again all members of the Computer Graphics Group of the University of
Erlangen-Nuremberg, participated. In total, each of them is shown 64 stimuli in randomized
order; a whole session lasts about 25 minutes.

Object-wise geometric LOD

In the first part of the experiment, we use the Stanford bunny for the object-wise geometric
LOD. We consider eight different scenarios, varying the movement velocity and the employed
LODs (the coarser LOD features between 3% and 88% fewer triangles than the finer LOD).
Moreover, different initial locations and movement directions are chosen. The bunny moves
either horizontally across screen or towards the user. The LOD is switched after a certain hor-
izontal distance has been covered or the distance to the camera has fallen below a threshold,
respectively. As in experiment I, for each scenario, we additionally include the corresponding
static case and, for testing for subject reliability, consider each sequence also without changing
the LOD. Altogether, each scenario is hence presented to a subject in four instances (dynam-
ic/static, with/without LOD change).

Theparticipant is essentially freely viewing the object and not told a specific region towhich
to direct its attention. To increase the chance that the subject attends a region where popping
occurs, we show each dynamic scenario instance three times and each static one twice, with a
one-second gray interval between the repetitions. After all repetitions of a stimulus have been
presented, the subject is asked to vote whether popping was perceived and, if yes, to rate the
strongest detected popping artifact on a three-level scale (hardly . . . clearly visible).

The mean of the subjects’ average popping detection rates is 61.46% (stdev: 16.61%) when
the LOD was changed and 4.17% (4.87%) in case of no LOD switches, suggesting that popping
artifacts were indeed perceived by all subjects. For the cases with LOD changes, a repeated-
measures ANOVA shows a main effect of whether the stimulus is static or dynamic (F(1, 11) =
5.337; p = 0.041) and of the scenario (F(7, 77) = 18.222; p < 0.0001) on detection perfor-
mance.

Concerning the evaluation of our predictor’s output, comprising several popping regions
for each scenario, note that we cannot predict whether one of these regions is attended to and
especially not which one. However, assuming that our predictor works, we can reasonably ex-
pect that the chance of attending to any of the predicted popping regions increases as the object’s
coverage with popping regions grows. Moreover, the larger the ratings R of the predicted re-
gions, the higher the chance of detecting popping when attending to a popping region. Adopt-
ing this reasoning, we assign to each output of our predictor both a coverage score (four levels:
tiny, small, large, huge) and a rating score (four levels: very low, low, high, very high), reflect-
ing the average rating R of the most highly rated popping regions. We then derive an integer
detection score (1 . . . 5) according to a rule table (cf. Table 10.1).

For the obtained detection scores, we observe a high rank correlation to the subjects’ aver-
age detection rates for the static case (τc = 0.833), the dynamic case (τc = 0.917), as well as both
cases together (τc = 0.830). Treating the score as interval-scaled, Pearson’s r suggests a highly
linear relationship (static: r = 0.922; dynamic: r = 0.929; both: r = 0.927).
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Coverage score
tiny small large huge

very low 1 1 2 2
Rating low 1 2 3 3
score high 2 3 4 5

very high 3 3 5 5

Table 10.1 Rule table employed for mapping coverage and rating score to a detection score.

Further analysis shows that there is also a lower, but still distinct correlation between cov-
erage score and detection rate (static: τc = 0.750, r = 0.816; dynamic: τc = 0.792, r = 0.860;
both: τc = 0.750, r = 0.848). In addition, the rating score correlates well to the subjects’ average
rating of how strong they perceived a detected popping artifact (static: τc = 0.938, r = 0.916;
dynamic: τc = 0.750, r = 0.829; both: τc = 0.781, r = 0.878). Overall, we reckon that these
distinct relationships are an encouraging indication that our predictor works well.

Terrain LOD

In the second part of the experiment, our terrain LOD example is used, showing a fly-over. We
again consider eight scenarios with varying flying speeds; in each, a different terrain region is
subjected to a LOD switch.Moreover, shading is altered by imposing different times of day.The
LOD is changed after a certain distance has been covered, affecting only a single terrain tile.
As before, each scenario is presented in four different instances (dynamic/static, with/without
LOD change). We also adopt the same stimulus presentation and voting procedure as in the
first part. However, since the terrain sequences are much more complex and popping can only
occur at a rather small region (a single tile), the likelihood that the subject directs its attention
towards the occurrence of popping is far too low, as also indicated by a pretest. To address this,
we highlight a circular region, with a radius of about 50 pixels on average, to which the user
should attend to for two seconds before each trial.

Themean of the subjects’ average detection rates is 67.71% (stdev: 33.59%) for the instances
with a LOD change and 3.13% (4.21%) otherwise, again indicating that no random answers
were given. A repeated-measures ANOVA for the cases with LOD changes shows a main effect
of whether the stimulus is static or dynamic (F(1, 11) = 5.337; p = 0.004) on detection rate,
but not of the scenario (p = 0.170).

In the static case, our predictor’s output always yields a coverage score of at least “large” and
a rating score of at least “high”. On the other hand, the mean of the scenarios’ average detection
rates is 75.0% (stdev: 8.33%) and the mean of the average severity ratings on the three-level
scale is 2.20 (stdev: 0.24). That is, well-visible popping didn’t get noticed by everyone, which
we attribute to inattentional blindness. For instance, even a whole mountain tip popping in got
missed by two subjects. Therefore, we feel that the overall voting result is well captured by our
predictor’s output.

In the dynamic case, we observe a larger variation of coverage and rating scores as well as
in subject response. However, given that attention was guided to the affected terrain region and
that there are three repetitions to detect popping, we expect coverage score to play aminor role.
It is thus not surprising that coverage score is only weakly correlated to the subjects’ average
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detection rate (τc = 0.234, r = 0.285), whereas, on the other hand, the rating score shows a
distinct relationship with the detection rate (τc = 0.750, r = 0.811).
10.4.3 Conclusion

Overall, both the presented indirect evaluation of our predictor for the second experiment
and the direct evaluation of a single popping region in the first experiment indicate that our
approach yields plausible and useful predictions of popping perceptibility. In particular, we
consider the good correlations between our predictions and the subjects’ votings to be very
encouraging. This is especially true given the simplifying assumptions made and the influence
of attentional effects. Not least due to them, our predictor is however still far from offering a
complete and general solution, but constitutes a promising first step.
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Conclusion

In this thesis, we have considered three different topics that have a high potential for enhanc-
ing realism in real-time rendering. At first, soft shadows were covered. Adopting the general
soft shadow mapping algorithm with occluder backprojection as basis, we presented several
new approaches and techniques concerning diverse aspects, like acceleration structures and
occluder approximations, improving on attainable visual quality and performance. In particu-
lar, occlusion bitmasks were introduced, which provide a robust, sample-based solution to the
long-standing occluder fusion problem. Moreover, we discussed soft shadow level of quality
and proposed a practical scheme for smooth quality variation.

Subsequently, we have been concernedwith curved surfaces and according renderingmeth-
ods, concentrating mainly on adaptive tessellation. Besides investigating recursive refinement,
we discussed and presented contributions to tessellation patterns, deriving tessellation factors,
and rendering refinement patterns. Most notably, however, the patch-parallel CudaTess frame-
work, which allows efficiently running all major steps on the GPU, was introduced.

Finally, human visual perception and leveraging its characteristics and limitations have
been dealt with. We presented a rapid GPU-based variant of threshold maps, which enables
the use of this perceptually based image metric, and hence accounting for perceptual sensitiv-
ity, during rendering, as demonstrated by a pipeline for LOD control that exploits scene-level
visual masking. Furthermore, a perceptually motivated predictor for visual popping, which
employs a vision model to identify popping-prone screen regions and estimate the severity of
the occurring popping artifacts, was proposed and evaluated in a user study.

Outlook

Note that attainable realism in real-time rendering is not only a matter of visual quality and the
accuracy of the employedmodels and approximations but always also of performance. Achiev-
able performance, however, depends on the available raw computational power, the hardware
features and the offered possibilities to map a given algorithm to them. But graphics hardware
keeps advancing rapidly regarding provided computational power, and functionality offered
and exposed to the programmer is growing continuously, with Direct3D 11 [252], for exam-
ple, introducing new pipeline stages and compute shaders. Furthermore, if Intel’s upcoming
Larrabee chip [349] is any indication, future generations of graphics hardware will offer signif-
icantly more flexibility and programmability.

Consequently, methods and strategies currently not feasible may eventually offer simpler
and better solutions than the presentedGPU-based techniques, which, however, provide a good
foundation for further improvements. For example, our approach of sampling light visibility
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and tracking it with an occlusion bitmask is equally appropriate for determining accurate soft
shadows by working directly with the real occluder geometry instead of with a shadow map
approximation. Similarly, our method for dynamically generating non-uniform amounts of
geometry purely on the GPU, introduced within the CudaTess framework, is well suited for
near-future graphics hardware and also useful for other applications beyond tessellation.

Regarding future challenges, providing accurate and not just physically plausible soft shad-
ows for complex scenes in real time is one major open problem, whose solution probably ne-
cessitates some future graphics hardware. Another issue is predicting and avoiding popping
artifacts reliably, with our perceptually motivated predictor constituting a promising first step.
Furthermore, while individual solutions exist for many aspects of improving realism, combin-
ing and integrating them to one comprehensive rendering approach, especially to one that still
achieves real-time performance, remains a significant challenge.
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