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Abstract

Numerous approaches to describe curved surfaces

have been proposed in computer graphics. Basi-

cally all of them require the generation of an ap-

propriately refined triangle mesh for rasterization-

based rendering characteristic of current-generation

GPUs.

In this paper we deal with PN triangles as sur-

face primitives and render them with GPU-resident

refinement patterns obtained by successive 1-to-4

splits of a generic triangle. The actual pattern and

hence the subdivision level is chosen on a per-

primitive basis by means of a novel screen-space

error metric, yielding an adaptive tessellation ac-

cording to the viewing situation with vertex position

computations being performed solely on the GPU.

To avoid visible cracks in the resulting mesh, stitch-

ing is performed by rendering appropriate connec-

tion patterns. These also help to close holes inherent

to the PN triangulation of coarse base meshes with

corner-like features.

1 Introduction

Often a key to a realistic and visually pleasing ap-

pearance of rendered objects are curved surfaces.

One possibility to model them in a resolution-

independent manner are PN triangles [16]. A mesh

composed of such primitives is uniquely described

by a coarse triangular base mesh with per-vertex

normal information. While ray tracing techniques

can directly operate on the resulting parametric rep-

resentation [13, 15], in a rasterization-based ap-

proach each PN triangle is first subtriangulated such

that its surface is approximated reasonable well and

then the resulting triangle mesh is rendered.

Selecting the appropriate tessellation level is cru-

cial since a too coarse refinement causes the sur-

faces and especially the model’s silhouettes to no

longer appear curved while an overly fine subdivi-

sion results in additional dispensable vertices and

triangles to be processed by the GPU, unnecessarily

slowing down rendering. More precisely, the subtri-

angulation level has to be chosen on a per-patch or

per-edge basis and not be fixed for all PN triangles

composing a model since the PN triangles’ screen-

space sizes often vary considerably and they are

usually curved to different degrees. For instance,

flat PN triangles need not to be subtriangulated at

all if per-fragment shading is performed.

In this paper we propose a method to obtain such

an adaptive tessellation for real-time rendering of

PN triangle meshes. It is driven by a novel screen-

space error metric that takes the actual degree to

which a PN triangle is curved into account. For

each PN triangle an appropriately selected refine-

ment pattern is rendered with merely the triangle’s

control points being provided as parameters and the

actual calculation of vertex positions being carried

out on the GPU. These patterns are shared among

all PN triangles and stored in fast graphics memory.

They are created by successively performing 1-to-4

splits of a generic triangle.

Because the subdivision level is chosen indepen-

dently for each PN triangle, cracks between the tes-

sellation of adjacent PN triangles may occur. To

this end, a stitching process is performed which in-

volves rendering connection patterns similar to the

refinement patterns. As a side-effect, holes due to

corner-like features in the model’s coarse base mesh

get closed, too.

2 Related work

A PN triangle [16] is a cubic triangular Bézier patch

b(u, v) =
∑

i+j+k=3

3!

i! j! k!
wiujvk

bijk (1)
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Figure 1: Control points bijk of a PN triangle’s cu-

bic Bézier patch.

with w = 1−u−v, whose control points are merely

depending on the vertex positions and normals of a

defining base triangle. Since each PN triangle in a

mesh is thus independent of neighboring triangles,

they can be treated in isolation which makes this

primitive amenable to hardware tessellation.

Given a base triangle with vertices at positions

Pm and accompanying normals Nm, the corre-

sponding PN triangle’s vertex control points (cf.

Fig. 1) are chosen to coincide with the base trian-

gle’s vertices, i.e.

b300 = P1, b030 = P2, b003 = P3.

The tangent control points for the edge P1P2 are

given by

b210 = 1
3

(

2P1 + P2 − w12N1

)

b120 = 1
3

(

2P2 + P1 − w21N2

)

where wij = 〈Pj − Pi,Ni〉. The ones for the re-

maining edges are computed analogously. Finally,

the center control point is derived via

b111 = 1
4

(

b210 + b120 + b021 + b012

+ b102 + b201

)

− 1
6

(

b300 + b030 + b003

)

.

The normal field of the PN triangle is given by

a separate quadratic Bézier patch whose control

points nijk are a function of the input positions Pm

and normals Nm, too.

PN triangles were devised to easily enable con-

trol point computation and tessellation by consumer

graphics hardware so that just the base triangles’

vertex positions and normals need to be specified

by the application. While some ATI chips provide

such a hardware support, they require the user to

choose a fixed and uniform subtriangulation level

for all PN triangles.

More recent work by Chung and Kim [6] sug-

gests a hardware implementation which adaptively

tessellates PN triangles. To this end, a subdivi-

sion level for each edge is determined by the edge’s

screen-space length and a corresponding triangu-

lar mesh is generated on-the-fly. Note that this ap-

proach yields a non-uniform tessellation pattern in

case the subdivision levels for a triangle’s edges dif-

fer [12]. Furthermore, because subdivision is only

guided by the edge length, each PN triangle can still

be treated in isolation by the proposed hardware im-

plementation without causing cracks in the model.

A similar goal as in the adaptive tessellation of

curved surfaces is pursued in the view-dependent

refinement and coarsening of triangular meshes

[9, 10], where the selection of an appropriate level-

of-detail is governed by some error metric [11].

While most of the early approaches operated on sin-

gle edges or triangles, more recent ones changed the

granularity to patches of up to several thousand tri-

angles [2, 7, 14] to account for the vastly increased

processing power of current-generation GPUs and

avoid rendering the CPU-based LOD adaptation a

main bottleneck.

Taking the recent developments of graphics hard-

ware into account, Boubekeur and Schlick [3] pro-

posed a mesh refinement technique that exploits

the GPU’s programmability, renders primitives in

larger batches and keeps the amount of geometry

data transferred from CPU to GPU low. More pre-

cisely, refinement patterns are generated by sub-

dividing a generic triangle to various levels with

each vertex being assigned its barycentric coordi-

nates as position. When rendering a model, for each

coarse-level triangle a refinement pattern is drawn

and additional parameters are provided depending

on the kind of refinement like procedural displace-

ment mapping or PN tessellation. These parame-

ters are then used in a vertex shader to translate the

pattern’s vertices to the correct positions according

to the employed refinement method. Since there is

no need to create and store refined triangulations

of a whole model but merely an appropriate refine-

ment pattern shared by the model’s triangles must



be held as vertex array in the graphics card’s RAM,

the memory footprint is rather low.

While this technique originally only allows for

uniform refinement of triangular meshes, several

more complex GPU-based adaptive tessellation

schemes were suggested for other surface descrip-

tion methods like Catmull-Clark subdivision sur-

faces [1, 5] and trimmed NURBS and T-spline

surfaces (approximated by rational bi-cubic Bézier

patches) [8].

3 Adaptive tessellation

In our approach we adopt rendering refinement pat-

terns for the subtriangulation of PN triangles, i.e.

a pattern is rendered for each PN triangle with the

control points bijk and nijk being provided as pa-

rameters. While the vertex shader performs the

translation of the pattern’s vertices onto the PN tri-

angle’s surface by evaluating Eq. (1), the fragment

shader evaluates the normal field for shading.

However, in contrast to Boubekeur and Schlick

[3], we don’t use the same pattern for all triangles

of a model but select the pattern on a per-triangle

basis such that both the refinement level is as low

as possible and a given screen-space error bound is

satisfied, resulting in an adaptive tessellation of the

model’s PN triangle mesh. Moreover, we restrict

ourselves to refinement patterns created by succes-

sive 1-to-4 splits of a triangle (cf. Fig. 2), i.e. to sub-

division levels of 2ℓ − 1. When switching from

one pattern to the next one, this choice enforces

that either the mesh gets refined by adding new ver-

tices or it is coarsened by removing some vertices

while keeping the remaining vertices’ positions un-

changed. Hence the borders of a PN triangle’s tes-

sellation are not suffering from “swimming” arti-

facts.

The hierarchical structure imposed by the 1-to-

4 splits can also be exploited to keep the memory

requirements low. Since the vertices of patterns for

coarser refinement levels are real subsets of the ones

for the finest level, it suffices to store the vertices of

the most detailed pattern in a vertex array and pro-

vide index arrays for all refinement patterns. Also

note that the restriction to uniform subdivision via

1-to-4 splits keeps the number of different patterns

comparatively low which would be especially hard

in case different subdivision levels were supported

for each edge.

To select the coarsest refinement pattern for each

PN triangle which respects a given screen-space er-

ror bound, we employ a novel error metric that takes

a PN triangle’s actual shape and size into account.

In particular, it seems mandatory to include the de-

gree to which a PN triangle is curved and hence its

surface deviates from the corresponding base trian-

gle in such a metric to avoid overly fine subtriangu-

lation. For instance, in the extreme case of a flat PN

triangle where all per-vertex normals coincide with

the triangle’s face normal, no subdivision is needed

at all. Note that because the normal field is evalu-

ated on a per-fragment basis, the smoothness of the

surface’s shading and the appearance of highlights

don’t depend on the actual degree of geometric sub-

division.

Figure 2: Refinement patterns for subdivision levels

0, 1 and 3 (top, from left to right) and their usage for

tessellating a PN triangle (bottom).

A crucial quantity in the derivation of our error

metric is the distance of the tangent control points

from their corresponding edges. While it can eas-

ily be shown that this distance is bound by L/6
[16], where L denotes the base triangle’s longest

edge, we determine the actual distances dijk to get

a tighter error bound for flatter PN triangles.

Suppose a PN triangle is tessellated with a subdi-

vision level of 2ℓ − 1. Then for those vertices that

would be newly inserted along an edge by the next

1-to-4 refinement step, it can be shown that their

maximum distance from the polyline currently ap-

proximating the Bézier boundary curve in any di-

rection perpendicular to the corresponding edge is

bound by

dmax(d1, d2, ℓ) ≤

4−ℓ · max
t∈[0,1]

∣

∣( 3
2
− 9

4
t) d1 + ( 3

4
− 9

4
t) d2

∣

∣

where d1 and d2 denote the quantities dijk of the

involved tangent control points. While this metric



only takes certain vertices into account, it provides

a reasonable estimate for the maximum deviation of

the Bézier boundary curve from its polyline approx-

imation.

Hence, after ℓ 1-to-4 splits of the base triangle,

the maximum deviation of the resulting tessellation

from the actual PN triangle can be estimated by

dmax(ℓ) = max
{

dmax(d210, d120, ℓ),

dmax(d021, d012, ℓ), dmax(d102, d201, ℓ)
}

≤ 4−ℓ · 9
4

max
{

d210, d120, d021,

d012, d102, d201

}

:= 4−ℓ · 9
4

d′

max

as far as the PN triangle’s boundary is concerned.

However, we note without further proof that this ap-

proximation also accounts for the maximum devia-

tion of the PN triangle’s surface with respect to the

flat base triangle. Finally, since

∑

i+j+k=3

3!

i! j! k!
wiujvk dijk ≤ d′

max

holds, where d300 = d030 = d003 = 0 and d111 ≤
3
2
d′

max, the overall deviation is bound by d′

max.

For each PN triangle, d′

max is calculated in a pre-

process. During runtime, it is projected into screen

space, yielding the error bound emax. This is then

used to determine the appropriate refinement pat-

tern for rendering the PN triangle. By comparing

emax to the user-specified screen-space error bound

ε, we first check whether subtriangulation is re-

quired at all. If this is the case, ℓ is determined such

that 4−ℓ emax ≤ ε holds.

Note that with our metric a single 1-to-4 refine-

ment causes the screen-space error to be reduced by

a factor of four while employing the edge length for

guiding the subdivision level would only indicate a

halving of the error. Consequently, for larger val-

ues of emax/ε our method requires the processing

of far fewer vertices and triangles without degrad-

ing visual quality compared to approaches based on

edge length as coarser refinement patterns can be

rendered.

4 Stitching

Usually more than one distinct refinement pattern

is used for rendering the PN triangles of a model

because differently fine subdivision levels are re-

quired to satisfy a given screen-space error bound.

Hence there are some adjacent PN triangles which

are tessellated to different degrees and whose com-

mon boundary curve is thus approximated by dif-

ferent polylines. As a consequence, cracks are in-

troduced in the resulting refined triangular mesh of

a model.

Referring to Fig. 3, basically two situations can

be distinguished at such places of discontinuity

in subdivision. Either tiny holes appear due to

the cracks (a) or the refinement patterns rendered

for two adjacent PN triangles overlap slightly (b).

While the first case can lead to visible artifacts as

single pixels along the common boundary curve

in question might be omitted and reveal the back-

ground, the second setting is usually less problem-

atic. In particular, if the screen-space error bound

is chosen small enough, no visible discontinuities

appear at all.

To avoid visible holes due to cracks, we stitch

the mesh resulting from approximating the PN tri-

angles with refinement patterns. This is achieved

by rendering for each pair of adjacent PN triangles

with different refinement levels a general triangle

strip that connects the two polylines used for the

common boundary curve (the gray areas in Fig. 3

(a) and (b) depict such strips). Similar to the refine-

ment patterns, connection patterns for all possible

stitching strips are generated and kept in fast graph-

ics memory. These are then used for rendering the

strips, keeping the amount of data to be transferred

from CPU to GPU to a minimum as merely the con-

trol points for the common boundary curve have to

be provided as parameters.

3 1

(a)

1 3

(b)

2 1

(c)

Figure 3: Adjacent triangles of different subdivision

levels.

In situations where the refinement patterns for

adjacent PN triangles overlap, stitching results in

mesh fold-overs which could lead to visual artifacts

if a large screen-space error bound is chosen. To al-

leviate such disturbances, we check for these cases



and skip rendering those triangles of the connecting

strips which would cause a fold-over. For reasons of

simplicity, consistent numerical precision and speed

we don’t perform the necessary tests on the CPU

but render the connection patterns with back-face

culling enabled, which works fine in practice for

closed models.

Note that in case the subdivision levels of two

adjacent PN triangles differ by more than one 1-

to-4 split and the shared boundary curve has an S-

like shape, minor imprecisions can occur. However,

thanks to our restriction to refinement patterns re-

sulting from successive 1-to-4 splits these situations

are very rare. In contrast, if subdivisions level other

than 2ℓ − 1 were allowed, such settings would be

encountered quite often (cf. Fig. 3 (c)). Moreover,

a much larger number of connecting strips would

have to be generated, significantly increasing the

memory load.

We further note that in a certain sense, our ap-

proach of rendering refinement and connection pat-

terns comes down to decomposing non-uniform tes-

sellation patterns into a uniformly tessellated cen-

tral part of highest subdivision and into transition

regions to boundary curves of lower subdivisions.

A

B

C

D

Figure 4: Adjacent triangles with different per-

vertex normals at the common edge AC.

In case the coarse triangle mesh has not explicitly

been modeled for being rendered with PN triangles,

it might happen that triangles sharing a single vertex

provide different normals for the common vertex to

model features like corners. Hence adjacent base

triangles can lead to PN triangles that don’t share a

common boundary curve. For instance, referring to

Fig. 4, the common edge AC becomes a boundary

curve of PN triangle ABC whereas the counter-

part at PN triangle DAC is the dotted curve, i.e. a

hole appears in the PN triangle mesh not present in

the coarse base mesh.

However, as a side-effect of performing stitch-

ing by rendering connecting strips, such holes in-

herent to the PN triangulation get closed (cf. Fig. 5).

Therefore, if neighboring PN triangles have differ-

ent per-vertex normals specified, we render connec-

tion patterns even in case the subdivision levels are

equal. For the pattern’s normal field we adopt the

heuristic of using the normals along the boundary

curve of that affected PN triangle whose base tri-

angle’s face normal deviates less from the average

face normal of the connection strip for subdivision

level 1.

Figure 5: Holes in models (left) caused by specify-

ing different normals for a vertex shared by multiple

faces can be closed with connecting strips (right).

We reckon that an enriched PN triangle descrip-

tion like ST meshes [4] might be a better option for

modeling special features like creases. Yet, they re-

quire the user to specify additional scalar values for

the involved vertices and support only two differ-

ent normals per vertex. On the other hand, without

careful modeling, providing different normals for a

vertex shared by two base triangles cannot only lead

to holes in the PN triangulation of the base mesh but

to more severe artifacts like neighboring PN trian-

gles which intersect.

5 Geomorphing

Since our adaptive tessellation method is based on

successive 1-to-4 splits, geomorphing support can

be incorporated in a natural way. But adopting such

a smooth blending scheme for switching between

different refinement patterns has some shortcom-

ings. First, geomorphing incurs higher rendering

costs as the computation of the vertex positions be-

comes more complex. Even worse, connection pat-

terns have to be rendered not only for adjacent PN

triangles whose subdivision levels differs but also

for those employing the same refinement pattern

but different geomorphing transition values. This

could be alleviated to some degree, however, by de-

termining the transition parameter per edge instead



of per triangle and allowing for non-uniform transi-

tion values for the vertices of a rendered refinement

pattern [2, 14].

Second, geomorphing is only useful if the screen-

space error bound is sufficiently large (e.g. ε >
0.5 pixels) as otherwise no popping artifacts can be

noticed anyway. Since an increased number of con-

nection patterns need to be rendered if geomorphing

is performed it is not even ensured that the render-

ing time is reduced if the screen-space error bound

is increased and geomorphing is enabled. Note that

in supra-threshold settings where the error bound

allows for deviations of several pixels, overlapping

refinement patterns might lead to visible artifacts.

Moreover, the connection patterns might become

clearly visible as their normal fields stay constant in

the surface direction perpendicular to the approxi-

mated boundary curves.

Summing up, since a small screen-space error

bound is essential for avoiding artifacts, geomor-

phing is not really necessary but incurs additional

overhead. However, note that it is well-suited to

avoid popping in case of uniform tesselation in

supra-threshold settings.

6 Results

Some example scenes rendered with our method are

depicted in Fig. 6. Note that the employed models

were not explicitly modeled with PN triangulation

in mind and that geomorphing was disabled.

Triangles Frame rate
Scene b a u b a u

Bunny (side) 2000 46537 129152 341 218 140
Bunny (top) 2000 45026 129152 397 244 145
Caesar mask 2000 88054 606720 173 110 44
Venus statue 1418 26894 91744 462 319 188

Table 1: Number of drawn triangles and rendered

frames per second in the example scenes (viewport

1600 × 1144) in case of no subtriangulation of the

base mesh (b), adaptive (a) and uniform (u) tessel-

lation with a screen-space error bound of 0.5 pixels.

By means of the model of a Venus statue, Fig. 7

demonstrates the effectiveness of using connection

patterns for closing holes caused by either cracks

or by specifying multiple normals at certain ver-

tices (e.g. at the left arm stump). As the triangle

counts show, only an overhead of roughly 15% is

Figure 6: Side (top row) and top view (middle) of

bunny model and close-up of Caesar mask model

(bottom) rendered both as triangle mesh (left) and

as adaptively tessellated PN triangle mesh (right).

introduced by our stitching approach based on con-

nection patterns. Finally, in Fig. 8 the advantage

of using adaptive tessellation becomes apparent. In

case of uniform tessellation, the finest subdivision

level required by any of the PN triangles to respect

a given screen-space error bound determines the re-

finement pattern rendered for all PN triangles.

Quantitative results for these scenes obtained

with an NVIDIA GeForce 7800 GT are listed in Ta-

ble 1. All reported frame rates, including the ones

for the case of no subtriangulation, comprise the

evaluation of the PN triangles’ normal fields on a

per-fragment basis as well as Phong shading with

a single light source. Adaptive tessellation results

in 2.7 to 6.9 times fewer triangles being rendered in

our example scenes and an increase in frame rate by

a factor of 1.6 to 2.5 compared to uniform tessella-

tion.



1418 triangles 23357 triangles 26894 triangles

Figure 7: Venus statue’s base mesh (left), adaptive tessellation without (center) and with stitching (right).

1418 triangles 91744 triangles 26894 triangles

Figure 8: Venus statue’s coarse base mesh (left), corresponding uniform (center) and adaptive tessellation

(right) respecting the same screen-space error bound.



7 Conclusion

We presented an approach to render meshes com-

posed of PN triangles with current GPUs. An adap-

tive tessellation guided by a novel screen-space er-

ror metric is performed by rendering appropriate re-

finement patterns for the PN triangles. Furthermore,

connection patterns are employed to avoid visible

cracks and to close holes inherent to a model’s PN

triangulation.
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