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1. On projecting arbitrary configurations into the
space of valid configurations

To generate a random valid configuration A € V, it may be tempt-
ing to start with an arbitrary configuration A° € D (for instance
by determining a random value for each variable of A°) and then
project it into the space of valid configurations V. However, due to
the complex shape of V with the intricate dependencies among its
variables, such a projection is generally hard and there is also no ob-
vious notion of what the closest valid configuration A* is, let alone
finding such a A*. Pivotally, it is not feasible to simply project each
variable separately because these are interrelated, with the value
chosen for one affecting the permissible domains for others.

Consequently, settling on a certain value for one variable may
require changes to other variables, which then may necessitate fur-
ther changes. And unless these values are selected carefully and
fixed in the correct order, which actually would require some ac-
counting for all constraints like in our approach, later changes may
require changing previously settled values again, potentially trig-
gering another chain of changes. Such a scheme may hence require
many iterations to arrive at a valid configuration.

Finding not just any but the closest valid configuration A* is even
harder. In particular, when adjusting one variable, it is often not
possible to assess which value would eventually yield A* without
considering the whole chain of changes entailed by this specific
value. Another issue is that while a distance between two config-
urations can be defined, it is unclear how to meaningfully weight
the differences in the individual variables relative to each other.
For instance, would it be better to select luminaire A and strongly
decrease the flux or to select luminaire B, which requires only a
moderate increase in flux but also a reduction in the number of lu-
minaires?

2. Implementation-specific choices

In the following, we provide some additional implementation de-
tails for our optimization approach. The underlying choices are of
empirical nature.

Interleaved exploration of chains. For each chain, we keep
track of how many iterations n,.. have passed since a proposal A’
has been accepted, how many iterations n.. have passed since a
proposal A’ led to a reduction in cost (i.e., C(A") < C(A)), and how
many iterations 7,y have passed since a proposal A’ improved on
the best solution A* encountered so far. If either n,. > 30, 1. >
50, or npy > 100 (and n > 20), we consider switching to another
chain with a probability of 0.8 every 100 iterations.

Annealing schedule. For each chain, the temperature is cho-
senas T = C(A®)/15 - T’, where A© denotes the chain’s initial
configuration and 77 = 100/max{n,., 100}.

Elementary mutations. When determining a relative change
A, the standard deviation of the employed truncated normal dis-
tribution is chosen as 1000 - 7" for fluxes (e.g., ®), 0.5¢ - T’ for
translations (e.g., ug, Avy), with ¢ denoting the length along which
translation may happen (e.g., ||Ly|]), 15° - T’ for rotations (e.g., ¢),
and 1.5 - T’ for counts (e.g., n).

Multiple mutations per iteration. The number of mutations
m executed per iteration varies between one and five; these are cho-
sen with probabilities 0.75 — 0.25w, 0.14 + 0.08w, 0.07 + 0.07w,
0.03 + 0.06w, 0.01 + 0.04w, respectively, where w = max{0, (7" —
0.2)/0.8}.

Change proposals. A random mutation is applied with a prob-
ability of 0.3. Otherwise, an unsatisfied goal or a subeffective in-
stallation site is targeted (randomly chosen according to their con-
tribution to the overall cost C).



