Practical Grammar-based
Procedural Modeling of Architecture

SIGGRAPH Asia 2015 Course Notes

Michael Schwarz
Esri R&D Center Zurich (formerly)

Peter Wonka
KAUST

Abstract

This course provides a comprehensive, in-depth introduction to procedural modeling of architec-
ture using grammar-based approaches. It first presents all necessary fundamentals and discusses the
various advanced features of grammar languages in detail. Subsequently, context sensitivity, which is
crucial for many practical tasks, and the different forms of support for it are addressed extensively. The
course concludes by looking into several further advanced aspects, such as local edits or GPU-based
variants.

Elements from a large body of work are covered and presented in a coherent, structured way. The
course explores the range of solution approaches, provides examples, and identifies limitations; it also
highlights and investigates practical problem cases.

The course is useful for practitioners and researchers from many different domains, ranging from
urban planning, geographic information systems (GIS) and virtual maps to movies and computer
games, with interests ranging from content creation to grammar-based procedural approaches in gen-
eral. They learn about the arsenal of available techniques and obtain an overview of the field, including
more recent developments. The audience benefits from a coherent treatment of ideas, concepts, and
techniques scattered across many (sometimes lesser-known) publications and systems. This course
helps in developing a realistic understanding of what can be done with current solutions, how difh-
cult and practical that is, and with which tasks existing approaches cannot cope.

Contents

1 Introduction 1
Michael Schwarz

2 Fundamentals 19
Peter Wonka
Background on production systems oL 20
Shapes e 27
Rules 29
Elementary shape operations 32
RulesII. . . . 46
Derivation process 53

3 Features of grammar languages 57
Michael Schwarz
Operation zoo o L e 58
Managing code complexity 67
Ease of expression 70
Values/objects within grammars L L 72
Shapesasobjects 76
Beyond “normal” shapes 85

4 Context-sensitive modeling 87
Michael Schwarz
Examples of tasks involving context sensitivity 88
Attributes 92
Context information provided by operations 96
Involvement of other shapes 97
Dedicated support for selected context-sensitive tasks 102
Spatial queries. e 114
Operations involving multipleshapes, 115
Multi-shape coordination 119

Vi

Solution options for selected tasks

5 Advanced aspects
Peter Wonka

Visual editing of rules and parameters
Localedits

Parameter adjustments via feedback loops

GPU-basedvariants

Background: other modeling approaches

6 Conclusions
Peter Wonka

Bibliography

Contents

201

Introduction

Introduction

Course: Practical Grammar-based Procedural Modeling of Architecture

Michael Schwarz

SIGGRAPH
AsId 2615
KOBE

1 Introduction

Procedural modeling

Model objects by specifying a procedure of how to construct/generate them

Different approaches/kind of procedures for different objects

This course:
Grammar-based approaches

e Grammar =set of rules + ...
* Principle: successive refinement guided by these rules

Shapes

¢ Primarily man-made structures encountered in architecture

Introduction

Example: rule-based modeling of facades

maallﬂam

Real-world facade Vertical structure

1

Introduction

Example: rule-based modeling of facades

Ledge

Rule: Facade — split(y) {3.5: FirstFloor| 0.3 : Ledge | ~1:TopFloors }

1 Introduction

Example: rule-based modeling of facades

Rule: TopFloors — repeat(y) { 3: Floor}

1

Introduction

Example: rule-based modeling of facades

Floor

Floor TIT|T|T(T|T|T

Floor

Floor

Rule: Floor — repeat(x){2:Tile}

1 Introduction

Example: rule-based modeling of facades

—
_|
v

-
ﬁ
_.l
—

Tile WndCol

o
Wall
Wall

— | -
— | -
—,r— | -

—

LA | -
o | I

Rule: Tile = split(x) { ~1:Wall | 1.5:WndCol | ~1:Wall }

1

Introduction

Example: rule-based modeling of facades

ar” Wall

N WndCol Window

BES Wall

Rule: WndCol — split(y) {~1:Wall | 2:Window | ~1:Wall }

1 Introduction

Properties and promises

Scalability

Compactness

Descriptiveness

Flexibility

Reusability

Large-scale generation of similar but varied objects
* One potential answer to the ever-increasing demand for content

Compressed representation
* Example: building footprint + attributes + grammar

Describes the essence of a design (“recipe”)
* Can facilitate understanding and exploration

Adapt to different geometries and settings
* Requires careful design

“Model once, use many times”

10

1 Introduction

Applications

Movies & games
large-scale city scenes, ...

Mapping

3D buildings from attributed footprints, ...

Urban planning
visualization, analysis, exploration
of different development strategies, ...

Architecture
parametric building design, ...

Archeology & cultural heritage
reconstruction, ...

© Matthias Buehler

The images were kindly provided by Matthias Buehler (matthias.buehler@mac.com).

Introduction

11

Applications

Movies & games
large-scale city scenes, ...

Mapping

3D buildings from attributed footprints, ...

Urban planning
visualization, analysis, exploration
of different development strategies, ...

Architecture
parametric building design, ...

Archeology & cultural heritage
reconstruction, ...

12

1

Introduction

Applications

Movies & games
large-scale city scenes, ...

Mapping

3D buildings from attributed footprints, ...

Urban planning
visualization, analysis, exploration
of different development strategies, ...

Architecture
parametric building design, ...

Archeology & cultural heritage
reconstruction, ...

Introduction

13

Applications

Movies & games
large-scale city scenes, ...

Mapping

3D buildings from attributed footprints, ...

Urban planning
visualization, analysis, exploration
of different development strategies, ...

Architecture
parametric building design, ...

Archeology & cultural heritage

reconstruction, ...

14 1 Introduction

Example: Favela

A nice example that demonstrates what can be done with grammar-based procedural model-
ing techniques is the Favela project by Matthias Buehler (matthias.buehler@mac.com) and
Cyrill Oberhaensli. Among others, it deals with hilly terrain and sloped building footprints,
includes procedural vegetation, features cables and clotheslines, and involves the distribu-
tion of connection points and detail assets.

1

Introduction

15

Example: Favela

" © Matthias Buehler & Cyrill Oberhaensli

16

1 Introduction

Example: Favela

© Matthias Buehler & Cyrill Oberhaensli

1 Introduction 17

Scope and goals

Focus on grammar-based procedural modeling
» Not covered: related topics such as procedural road networks or content pipelines

Overview of available solutions and the state of the art
e Coherent treatment of various ideas, concepts, and techniques

Become familiar with
* Involved aspects » Capabilities * Limitations
¢ Interrelation between features * Mode of operation * Practical problem cases

Develop a realistic understanding: What can be done?
How difficult and practical is it?

18

1

Introduction

Procedural modeling systems

CGA shape Mdller, Wonka, Haegler, Ulmer, van Gool (2006)
CityEngine Procedural/Esri

Generalized grammar Krecklau, Pavic, Kobbelt (2010)

CGA++ Schwarz, Miiller (2015)

Many other systems and extensions with important contributions
* Often based on/influenced by CGA shape
* Unfortunately, details often omitted (e.g., syntax, semantics, derivation process)
¢ Examples: Lipp08, Thaller13, Schwarz14, Steinberger14

Fundamentals

Course: Practical Grammar-based Procedural Modeling of Architecture

Fundamentals

Peter Wonka

SIGGRAPH
Aslid 2615
KOBE

19

20

2 Fundamentals

Formal languages

= A string over a set X (called alphabet) is a finite sequence of elements from =
= We use lower case letters a, b, ¢, d, ... to describe elements of the alphabet

2 Fundamentals

21

String grammars

Definition:a grammaris a
guadruple (NT, %, P, S)

NT - a set of non-terminal symbols

* We use upper case letters A, B, C, ...

Y, — alphabet, a set of terminal
symbols

P - a set of productions rules

S — start symbol

Example production rules:

CB
aB
bB
bC
cC

aSBC
£

BC
ab
bb
bc
cc

22

2 Fundamentals

String grammars - Chomsky hierarchy

= Regular grammars
= Context-free grammars more general
= Context-sensitive grammars

= Unrestricted grammars

= Context-free rules are the basis for most work in computer graphics and
computer vision

= In computer graphics, these rules will be extended to add context to
“context-free” grammars

¢ In string grammars there is only 1d context; we need more general spatial context

Fundamentals

23

Context-free grammars

= Rules have the form = Example
NT - (NT U X%)* S -_s &
S --> A
A --> aAdB
A --> abc
B -->b

= Counter-example

CB
aB
bB
bC
cC

aSBC
£

BC
ab
bb
bc

CccC

24

2 Fundamentals

How to give grammars a spatial interpretation?

= L-systems
* derive complete strings, interpret the string geometrically using turtle graphics

= Set grammars, CGA shape
* interleave derivation and geometric interpretation

2 Fundamentals

25

L-systems

Similar to string grammars
Parallel derivation

Successfully used for plant modelling
The Algorithmic Beauty of Plants (1990)

Images: The Algorithmic Beauty of Plants 1990

26

2 Fundamentals

L-system example

Vil W2
= X={F+-[, 1} :},“'Ié;z,
. 0 NN
= F (starting symbol) W \"y"j/',
m F --> FF-[-F+F+F]+[+F-F-F] 1\

Geometric interpretation

= F:go forward

+, -:turn by 22.5°

', |:push and pop the turtle on stack
4 iterations of replacement

Image: The Algorithmic Beauty of Plants 1990

2 Fundamentals

27

Shapes

» Shape (CGA shape)
* Scope (oriented bounding box)

® Parameters (string, bool, double)

= Shapes can be terminal and non-terminal

e Geometry (mesh, color, texture, shader attributes, ...

* Symbol (for better readability we use labels instead of letters)

)

Image: CityEngine Online Help System

28

2 Fundamentals

Shape design choices

= Pivot (reference coordinate system) as shape attribute (CityEngine)
* Extension for geo-spatial coordinate systems

= Shape types:
¢ Only boxes in non-terminal nodes
¢ solid, boundary, empty (Nil)

2 Fundamentals

29

Rules

Rule Form:
PredecessorShape --> Successor

PredecessorShape: exactly one shape

Successor: a sequence of actions generating zero to multiple shapes

Actions can be

* shape operations

e symbols

We also use the terms Left-Hand-Side (LHS) and
Right-Hand-Side (RHS) / rule body of a rule

30 2 Fundamentals

Example rule

Lot --> s('0.8, "1, '0.8) center(xz) extrude(20) Envelope

Envelope --> ...

= Non-terminal symbols: Lot, Envelope
= Shape operations: s, center, extrude

Image: CityEngine Online Help System

2 Fundamentals

31

Rule syntax examples

» CGA shape
floor --> Subdiv("X", 2, 1r, 1r, 2) { B | A | A | B }

= CityEngine
floor --> split(x) { 2: B | ~1: A | ~1: A | 2: B}

m (G2
* Rules and parameters have types

$Facade : Box(th: Float, mh: Float, ...) ->
splitY([bh, ©, :$BottomFloor[BF], ... , ... 1);

32

2 Fundamentals

Elementary shape operations

Insertion of assets

Transformations

Extrusion

Center

Component split

Subdivision split

Most examples use CityEngine syntax

2 Fundamentals

33

Insertion/replacement

= |nsertion operation:
e i("FILENAME")
* Bounding box of the mesh is scaled
to the size of the scope per default
= Example:
Head--> i("beethoven.obj")

= Details
* Built-in shapes, e.g.
i("builtin:cube™)
e Some grammars use insertion to

transition from non-terminal to
terminal symbol

Image: CityEngine Online Help System

34

2 Fundamentals

Transformations

Adapted from L-systems
Translation: t(tx,ty,tz)

Rotation: r(rx,ry,rz)

Scale:s(sx,sy,sz)

Advanced choices

* Choice of scope, world, pivot, or
object coordinate system

¢ Augmenting current transformation
vs. setting transformation

= Absolute
¢ in model coordinates
e eg.s(3, 3, 2)

= Relative
* proportional to the scope size
* eg.
s('0.5, '1, '1)
s(@.5*scope.sx, l*scope.sy,
l*scope.sz)

2 Fundamentals

35

Transformation example

= A--> i("builtin:cube")

" A--> i("builtin:cube")
t(2,0,0)

m A--> i("builtin:cube")
t(2,0,0) r(0,30,0)

e

—

i |
m A--> i("builtin:cube")
t(2,0,0) r(e,30,0) t('2,0,0)
|

A

N

—

Image: CityEngine Online Help System

36

2 Fundamentals

Extrusion

= Extrude a flat shape
Lot --> extrude(4) Building

= Extruding along an axis

* e.g.lotis on a hill, not aligned with
the ground plane
Lot --> extrude(world.y, 30)

Image: CityEngine Online Help System

2 Fundamentals

37

Center

= Centering a scope:
center (axes-selector)

= Example:
Lot --> s('0.8, '1l, '0.8)
center(xz) extrude(20)

Image: CityEngine Online Help System

38

2 Fundamentals

Component split

CGA shape
Splitting a mesh into its individual faces
Component split has the form:

comp (comp-selector) { selector : actions | selector :

Comp-selector:

« faces (1), edges (e), vertices (v)
Selectors:

e front, back, left, right, top, bottom

e vertical, horizontal, aslant,nutant,side,all

actions ... }

2 Fundamentals

39

Component split example

Building -->

comp(f) {
front : color("#ff0000") Main |

side : color("#0000ff") Side

}

z-axis of new scope is normal to the face plane

Image: CityEngine Online Help System

40

2 Fundamentals

Subdivision split

= Wonka 2003
= Control grammar to distribute parameters
= Grid split

Door

Balcony

Band

Comice

Image: CityEngine Online Help System

2 Fundamentals

41

Subdivision split

= CGA shape:

 simplification to 1d splits, no control grammar
= Rule Format

split(axis) { selector : actions }

= Example:
Lot --> s(5,1,1) i("builtin:cube™)
color("#84cOfc") split example@2
split example@2 --> split(x) {
3 : X

~1 : X(cuboid height1)
~1 : X(cuboid height2)
~1 : X(cuboid_height3)

Image: CityEngine Online Help System

42

2 Fundamentals

Lack of space

= First, the absolute values get priority from
left to right, e.q.
split example@3 --> split(x)
{ 2:X | 1:A | 1:2 | 2:Y | 1:Z2 }
= Second, relative values (~) divide
remaining space according to their
weights
split example@3 --> split(x)
{ 1.5:X | ~3:¥ | 1.5:X | ©.5:X }

= Not all specified shapes might be
generated

Image: CityEngine Online Help System

2 Fundamentals

43

Splitting design choices

= What splitting axis are allowed?
* Axis-aligned splits
* General 3D axis
* General splits
= |s splitting of arbitrary geometry supported?
» Splitting of 2D geometry (for lots)
e Splitting of 3D geometry
» Splitting of boxes only
= Grid Split vs. 1D split

a4

2 Fundamentals

Repeat split

= Wonka 2003 / CityEngine example
= Denoted by *
= Example:
ex01l --> split(x) {
1: X(3) |
{ ~1:Y | ©.2:X | ~1:Y }* |
1: X(3)

(initial scope has size 10)

Image: CityEngine Online Help System

2 Fundamentals

45

Combining repeat splits

= How to combine repeat splits?

» On the same level
e Eg. ex01 --> split(x) { {1: A}* | { 1: B}* }
* How to express that AABBEB is preferred over AAAABB?
= Nested
e Eg. ex02 --> split(x) { 1: A | { 1: B}* }*
* How to express that | would like to have as many inner as outer repeats?
e E.g. AB, ABBABB, ABBBABBBABBB

46 2 Fundamentals

Shape tree

= Shape tree: tree of shapes generated by the derivation process

Lot -->
s('9.8, 'l, '0.8) center(xz) extrude(20) Envelope

Envelope --> split(y) { ~4 : Floor. }*

Lot 38 Envelope S Floor

Floor

Floor

Image: CityEngine Online Help System

2 Fundamentals

47

Graph-based representations

» Shape operations are represented as nodes

= Nodes have inputs and outputs

= Data flow is controlled by edges

= Examples: Silva et al., Thaller et al., Patow, Houdini

Image: Silva 2015

48

2 Fundamentals

Parametric rules

= Rules can have a list of parameters

= Eg.
Lot --> s('0.8,'1,'0.8) center(xz) Footprint(20)
Footprint(height) --> extrude(height*0.8) Envelope

2 Fundamentals

49

Conditional rules

= Conditional rules have the form

PredecessorShape -->
case conditionl:
Successorl
case condition2:
Successor2
else:
SuccessorN

50

2 Fundamentals

Conditional rule example

Footprint(type) -->
case type == "residential" || type == "park":

case geometry.area/2 < 200 && geometry.area > 10:
extrude(10) Envelope

else:
extrude(15) Envelope

case type == "industrial":
extrude(100) Factory
else:
NIL

2 Fundamentals

51

Stochastic rules

» Stochastic rules have the form

PredecessorShape -->

percentage’%: Successorl
percentage’%: Successor2

else: SuccessorN

= Example:

Lot -->
30%: Lot("residential")
20%: Lot("retail")
else: Lot("industrial")

52

2 Fundamentals

Recursion

= We call agrammar recursive if a shape in the derivation tree can have a
shape with the same label / symbol as ancestor

= Examples:
Floor --> split(x) { 3: WinTile | ~1: Floor }

A --> BC
B --> DE
D --> AF

= Note: not all systems allow recursive grammars

2 Fundamentals

53

Derivation process

Depth first, e.g. G

* always replace the first non-terminal
e S,AB,DEB, dEB, deB, debb
Breath first (sequential)

e S,AB,DEB,DEb, dEb, db

Breath first (parallel / L-systems)
e S,AB,DEbb, dbb

Problem: Derivation strategy changes
the outcome, if rules can query the global
context

= Example Grammar

mm O Om > Wn

--> AB
--> DE

(if B is next to A)
(otherwise)

(if E is next to d)
(otherwise)

54

2 Fundamentals

Guidance of derivation order

= Priorities (CGA shape)
¢ each rule has a priority assigned
Evaluation phases (Steinberger2014)

¢ Sort the rules into multiple stages called evaluation phases

* Queries are only allowed to ask about state of previous or the same evaluation phase

Construction stages (Schwarz2014)
* new operation stage (k)
¢ shapes with smallest stage have priority

Events (CGA++)

* Coordinating the derivation with a complex event system
Approximate breadth-first derivation using heuristics

2 Fundamentals 55

Strategies for parallel implementation

Object-level parallelism:
* A city has many objects, e.g. buildings, derive each building in parallel

Shape-level parallelism:
¢ derive different shapes of the same object (building) in parallel
* e.g., after some initial derivation, derive mass models, floors, windows, ... in parallel

Rule-level parallelism:
* Parallelize different parts of a rule
e Eg. building --> [t(...) massl] [t(...) mass2] [t(...) mass3]

Operation-level parallelism:
e Parallelize different parts of the same operation
e Eg.floor --> split(x) { 1: A | ~1: B | ~1: B | 1: A }

56

2 Fundamentals

Features of grammar languages

Course: Practical Grammar-based Procedural Modeling of Architecture

Features of Grammar Languages

Michael Schwarz

SIGGRAPH
Aslid 2615
KOBE

57

58

3 Features of grammar languages

Operations

Purpose: modify or subdivide the current shape

Previous part: This part:

Elementary operations Advanced/complex operations
* Scope modifications e Geometry creation

e Split & repeat * Roofs

* Component split e Further subdivisions

* Geometry manipulation

3 Features of grammar languages

59

Geometry creation

Create new shape geometry
* Usually based on current shape geometry

Examples
e Create pre-defined shape (e.g., circle)
* Load geometry from asset

Explicit constructors
e Extrusion: extrude (amount)

Find inscribed rectangles (e.g., innerRect
Erect roofs

60

3 Features of grammar languages

Roofs

Dedicated operations for selected roof types
» Erect a roof on each face of the current shape
» Current shape is turned into a roof

Top

Top — roof(...) Roof

Roof

3 Features of grammar languages

61

Roof types

cross-hipped

roofHip(...)

cross-gabled pyramid

roofGable(...) roofPyramid(...)

62

3 Features of grammar languages

Roof parameters

thickness

/ angle

roof
overhang

>—

\

rake
overhang

3 Features of grammar languages

63

Split based on texture coordinates

Split position given in texture space

64

3 Features of grammar languages

Split based on area

Split position given by area
instead of distance

Fixed split direction

e

Honshu split into 5 equal-area parts

3 Features of grammar languages 65

Offsetting

Offset selected edges by a certain distance
* Result: one offset polygon per edge + remainder
» Offset polygons may be merged to a single polygon

Examples
e offset, setback shapel
e shapel, shapeU, shape0

* frame-split offset shape “‘*‘——,..

remainder /)

frame-split: uniform inward offset, partitioning similar to straight-skeleton-based approach

66

3 Features of grammar languages

Geometry manipulation

Manipulate/transform current shape geometry

Examples
* Reverse normals
* Remove collinear vertices

Remove holes

[]

Split non-convex faces into convex parts

Simplify geometry for lower level of detail

Compute or transform texture coordinates

3 Features of grammar languages

67

Managing code complexity

Constants
* Defined at global scope
* May encode input/design parameters
* May be exposed in Ul (CE: “attributes’, attr)

Functions
* Essentially a named expression
* May have parameters
* Defined at global scope
¢ May use dynamic scope during evaluation (CE)

const floorHeight =

scopeVolume

L ||

scope.
scope.
scope.

SX

sy
Sz

68

3 Features of grammar languages

Managing code complexity

Modules
* Rule with sub-rules
» Parameters of rule are accessible by sub-rule
* Sub-rules live in new namespace

* Rule prefixes

Sub-rule
Global rule

../ Sub-rule of parent module

$Rule:Box(w:Float, h:Float)
-> repeatX(w, :$SubRulel);
{
$SubRulel:Box
-> repeatY(h, $SubRule2);

$SubRule2:Box
-> ...

3 Features of grammar languages

69

Managing code complexity

Sub-grammars
¢ Content from other grammar can be imported
import id : filename

* Imported rules, functions & constants become visible with prefix id.
id.SomeRule(id.someFunc(...), id.someAttr)

» Values of “attribute” constants in imported grammar may be overwritten
e.g., with value of “attribute” constant in importing grammar of same name

70

3 Features of grammar languages

Ease of expression

Local variables
* Can increase readability

* Help reusing expression values
(especially random choices)

R -->
with(a
b

rand(4, 9),
someFunc(a))

{
A(b) B(70 - b) C(a)

¥

* Emulation possible:
Turn variables into parameters

R --> Ri(rand(4, 9))

R1(a) --> R2(a, someFunc(a))
R2(a, b) --> A(b) B(78 - b) C(a)

But: avoiding unwanted side effects
on shape tree can be challenging

3 Features of grammar languages

71

Ease of expression

Conditions
¢ Possibilities often limited:

CGA shape G? CE CGA++
Anywhere within rule? X X X v
Nesting possible? X X v v
Combinable with First condition, X v
stochastic selection? then stochastic

» Working around the limitations can be tedious;
often involves introducing additional rules/functions and duplicating code

72 3 Features of grammar languages

Values/objects within grammars

Elementary types Collections

* Numbers (floats) e Lists

¢ Booleans elements of same type, variable size
» Strings * Tuples

elements of different types, fixed size

* “Containers” = multi-dimensional lists

“Producers”
» Functions “Product”
* Rules * Shapes

CE has functions for representing a list as a string, where elements are separated by a semi-
colon.

3 Features of grammar languages 73

Rules as values

A rule may be used just as every other value; e.g., passed as argument

Using named rules Rules as parameters: G specifics

* Rule: » Non-terminal symbol
Building(h) --> ... parameter of type rule

» Reference: * Abstract structure template
%Building module/rule with rule(s) as parameter(s)

« With fixed argument(s): » Use as value: prefix with @

%Building(20)

At least in CGA++, rules are full first-class citizens and hence cannot only be passed around
but may also be stored in collections or as shape attributes.

74 3 Features of grammar languages

Rules as values

Anonymous rules

* Can be defined in-place » Rule value captures values of all outside
%< t(5, @, @) ... > variables referenced within body
map(h:1list(7, 11),
* May have parameters %< extrude(h) >)
%(h)< extrude(h) ... » 7

* May be empty 11

%< >

3 Features of grammar languages

75

Rules as values

Operations
* Invoke rule
invoke(%Building, 5)

e Execute rule in-place
apply(%(h)< extrude(h) >, 18)

» Stop rule execution
A Bstop CD

76

3 Features of grammar languages

Shapes as objects

First-class citizenship
» Existing shapes can be used as values
* New shape values can be created

One entity, three views
e Shapeitself
» Corresponding node in shape tree
* (Sub)tree rooted in that node

P
{

R O \Q
A0

(sub)tree

.

shape

3 Features of grammar languages

77

Accessing existing shapes

Current shape Shape tree queries
e this » Simple navigation
parent(node),
Scoped labels children(node),
o Definition:
label = action * More complex queries

findAll (tree, predicate, traversal),
* Access: (tree, p ’)

label (within same rule body)

parentShape: : label _
expression evaluated for each node

e.g., "bfs" = breath-first

78

3 Features of grammar languages

Shapes as arguments

Operations
* Boolean operations

intersect(otherShape),
minus (otherShape),
union(otherShape),

Functions
* Geometric properties
area(shape),

 Spatial relationships
overlaps(shapel, shape2),

3 Features of grammar languages

79

lllustrative example

S --> i("circle") m=B(7) t(3, @, @)
s(10, @, 10) minus(m) B(11)

B(h) --> extrude(h)

[B
N
87) @ * B(11)

80

3 Features of grammar languages

Creating new shapes

Functions
» Take shape value(s) as input, return new shape value(s)

* Shape modification

t(tree, dx, dy, dz), ... translates all shapes in subtree
¢ Subdivision

split(shape, axis) pattern, ... returns list of part shapes

* Tree rewriting
refine(tree, rule), ... applies rule to all leaf nodes

expression evaluated for each leaf node

3 Features of grammar languages

81

Creating new shapes

Tree constructor
e Syntax: < actions > (base)

* Initiates a sub-derivation process
with start shape base and
start rule %< actions >

* Yields a shape tree

Operations for incorporating shapes

* Embed a shape tree as sibling of
the current shape

include(tree)
* Modify current shape to match
another one
adopt (shape)

82

3 Features of grammar languages

Use case: temporary/auxiliary shapes

Construct shapes on-the-fly
* to reason about them
* to use them as arguments

Example

S --> minus(list(this->t(’
this->t("

syntactic sugar: chain operator

this->t('0.2, o,
= t(this, '0.2, 0,

e.g., to derive parameter values
e.g., for multi-shape operations

('0.2, 9,
('0.6, ©

3

'9.2)
'8.2)

'0.2)->s('@.2
, '0.2)->s('0.2

(CGA++)

k) '1J
k) '13

3 Features of grammar languages

83

Use case: exploring different alternatives

Example
* Two different development schemes

a = < DesignA >,
b = < DesignB > a/ \b
¢ Choose the one which results in
larger total mass volume 9 ”"
V(a) > V(b)
¢ Refine shape tree of chosen option l
and embed it

include(refine(...))

Example is adapted from Figure 4 of the CGA++ paper.

84

3 Features of grammar languages

Enhanced operations

Selectors can become arbitrary predicate expressions
» Predefined selectors are exposed as (local) functions on shapes (or local variables)
¢ Implicit variables provide information about objects tested
» Function values are applied implicitly

Example: component split

comp("f") {
top($shape) : Roof or simply: top
| right || front = FrontCorner = right($shape) || front($shape)
| side && $index > 4 : Walll
| !'bottom : Wall2
}

implicit variable

3 Features of grammar languages

85

IH’

Beyond “normal” shapes

Non-terminal classes

* A class defines operations and attributes

Box
* Scope part of a traditional shape
o Attributes: transformation + size
e Operations for creating terminals
renderGeometry(filename)

Generalization of shapes beyond scope + mesh geometry:
» Each shape (non-terminal) belongs to a class $A:Box -> ...

e Box, FFD, FFDTurtle, Mesh, Polygon, Triangle, ...

FFD

e Trilinear freeform deformation cage

* Strings of FFDs can approximate curves

* May be created by operations of Box
cornerFFD(angle, $SomeFFDRule)

86

3 Features of grammar languages

Beyond “normal” shapes

Generalization of scopes beyond bounding boxes:
Convex polyhedral scopes

* Scope can approximate geometry more faithfully

* May benefit simplicity of expression

» Affects semantics/degrees of freedom of operations
Example: direction and start position for splitting

Context-sensitive modeling

Course: Practical Grammar-based Procedural Modeling of Architecture

Context-sensitive Modeling

Michael Schwarz

SIGGRAPH
Aslid 2615
KOBE

87

88

4 Context-sensitive modeling

Tasks involving context sensitivity

Selection/Identification

 |dentify largest footprint
sizes may only be known after decomposition of parcel

» |dentify highest building mass
heights may have been chosen stochastically

» Select exactly k random footprints
number of footprints may not have been known a priori

Analysis
* Determine number of footprints
» Determine total area

——— .
??"
=

4 Context-sensitive modeling

89

Tasks involving context sensitivity

Alignment Interconnections

HEH

20

4 Context-sensitive modeling

Tasks involving context sensitivity

Boolean operations
* Cut out intersection with overlapping shapes
* Merge overlapping building masses
» Create single top surface spanning multiple masses and erect coherent roof

4 Context-sensitive modeling

91

Tasks involving context sensitivity

Account for occlusion
* Place door in unoccluded tile
» Adjust windows vertically to fully fit into unoccluded space

92

4 Context-sensitive modeling

Attributes

Encode specific information about a shape
* Can carry semantic and context information
* Value accessible within grammar

Built-in attributes
e Example: position of scope's origin
scope.tx, scope.ty, scope.tz

* Some may only be queried but cannot be (directly) set

User-defined attributes

» Example: floor index

4 Context-sensitive modeling

93

User-defined attributes

Boolean: Flags
* Can be set when creating a successor shape
$Successor[MyFlag]

¢ Cannot be cleared, remain set in whole sub-tree

e Can be queried
Flag.MyFlag

* Evaluate to false unless explicitly set

94

4 Context-sensitive modeling

User-defined attributes

Globally defined attributes
» Defined at global scope
attr floorHeight = 2.4

* Accessible as variable
floorHeight

* Value can be overwritten by an operation
set(floorHeight, 3.0)

* Qverwritten value applies to current shape and all its successors

 Built-in attributes (basically) exposed identically

4 Context-sensitive modeling

95

User-defined attributes

Key-value pairs
» Attribute name (key) can be an arbitrary string
Value can be of any type (including shape)
Highly flexible — e.g., allows arbitrary number of attributes

Set attribute: set("floorHeight", 3.9)

Retrieve value: et("floorHeight", 2.4
get(18 %)fallbackva!ue

Detail: child shapes in shape tree don't inherit attributes
¢ Retrieval walks up the ancestor chain until the attribute is found

» Advantage: can identify shapes that had an attribute explicitly set
e.g. allows tagging specific nodes

926

4 Context-sensitive modeling

Context information from operations

Encoding options

* Built-in attribute
set for each successor shape

split.index

Examples
» Split operation
split.index, indexofsuccessors
split.total numberofsuccessors
* Component split
comp.sel, selector

comp.index, comp.total

» Special variable
visible to operation's arguments

Operator.index

e Extrusion
Operator
.index index of edge
.1la edge’s left outer angle
.ra edge’s right outer angle

4 Context-sensitive modeling

97

Involvement of other shapes

Context-sensitive modeling often requires referring to other shapes
Prerequisite: these shapes must exist when establishing the context

Important role: derivation process/order and available means to guide it
They influence
* what contexts are possible

» whether the set of involved shapes is well defined and deterministic/reproducible
¢ the actual effort required to ensure that shapes exist

98

4 Context-sensitive modeling

Example implications of derivation approaches

Purely sequential, depth-first execution
» Particularly limited influence on derivation order

Evaluation phases
» Coarse-grained, global synchronization points at rule level

* Support referring to shapes from earlier phases
(and, in simple settings, from the same phase)

Events
* Flexible synchronization points (variable scopes, fine-grained) at action level
* |In principle, any derivation order could be enforced
* Enable the modeler to locally express ordering dependencies

4 Context-sensitive modeling

29

Identifying involved shapes

Different mechanisms and strategies
o Offer different granularity and control
* Some only yield a (conservative) set of candidate shapes — e.g., for occlusion testing
» QOthers identify specific shape(s) — e.qg., for alignment

Examples of simpler/coarser options

* Select by symbol name
all shapes with that symbol

* Select by relationship in shape tree
e.g., ancestors, siblings, or siblings of ancestor

¢ Select by construction stage
all shapes available at a certain stage; wait until stage reached

100 4 Context-sensitive modeling

Identifying involved shapes

First-class support for shapes enables arbitrary selections
» Directly query the shape tree
* Take a shape resulting from a preceding action in the same rule
» Explicitly pass a specific shape to a rule as argument or store it as an attribute

Powerful option: identification by participation in events
* An event is raised with the operation event

* An event serves as synchronization point,
thus influencing the derivation order to ensure existence

* The scope of an event may be restricted to a subtree via event groups

» All shapes participating in an event instance are available to the event handler
as a list of shape values

4 Context-sensitive modeling 101

Collecting shapes during derivation

Approach
» Shapes are stored in a container (= multi-dimensional list)
* Container is passed as argument to rules

» Container's content can be modified within a rule (call-by-reference semantic)
modify existing entry
add new entry via container . push (value)

Entries and their order are well defined due to G*s sequential, depth-first execution
* Use case: once collection is completed, create interconnections between shapes

Note: compiling such a collection also possible with CGA++
¢ Different derivation process requires different approach
* Collection only after the shapes to collect have been derived

102 4 Context-sensitive modeling

Dedicated support for selected tasks

Often, systems are per se not expressive enough for dealing with
most context-sensitive tasks

Common solution: offer ad-hoc functionality for a few selected tasks

Examples
* Occlusion
* Snapping
e Trimming

4 Context-sensitive modeling 103

Occlusion queries

CGA shape offers query function Shape.occ (occluderSet)
® Result: llnonell’ llpar‘tll' Or llfullll
» Test may be used in a rule's condition

Potential occluder sets:

e "all" all shapes generated so far
e "active" all active shapes, i.e., all leaves of the current shape tree
e "noparent” all shapes except current shape's ancestors

e "symbolName" all shapes with that symbol

104 4 Context-sensitive modeling

Occlusion queries

Visibility computation may be controlled by additional arguments

e Example: Shape.occ(occluderSet, "distance", enlargementAmount)
enlarges the current shape for the occlusion test

Variant: sightlines
» Test for occlusion of shortest line to certain geometry
» Example: Shape.visible("street")

Limitation: concrete occluder set depends on actual derivation order
* Rule priorities may not offer enough control
* Sets often only deterministic in the case of known sequential derivation semantics
» Offering differently defined sets could be one remedy

4 Context-sensitive modeling 105

Occlusion queries

CityEngine offers multiple query functions
e overlaps()

e touches()

e inside()

Set of shapes considered as occluders

Only shapes with a closed surface (“volumes”)

Only leaf shapes and (non-ancestor) shapes subjected to a component split
Shapes from the (previous) final shape tree, not of the current, evolving shape tree

Not the current shape and its successor shapes

106 4 Context-sensitive modeling

Occlusion queries

Actually two occluder pools
* Intra-occluders: occluders from “same” shape tree
¢ Inter-occluders: occluders from shape trees of other initial shapes
» QOcclusion queries may be restricted to one of them

Process: up to 3 derivation passes

1. Determine inter-occluders: run derivation process for all initial shapes #» “ghost models”
no occluders considered by occlusion query functions

2. Determine intra-occluders: run derivation process again # “ghost shape tree”
only inter-occluders considered by occlusion query functions

3. Create final model: run derivation process again (start with pruned ghost shape tree)
both inter-occluders and intra-occluders considered by occlusion query functions

4 Context-sensitive modeling 107

Occlusion queries

Issues
* Involves repeating the derivation process up to three times
* Inter-occlusion ignores intra-occlusion-induced effects in other shape trees

* Non-first-level intra-occlusion allowed but may not be resolved “correctly”
occlusion is evaluated with respect to the ghost shape tree,
i.e., differences induced by the actual first-level intra-occlusion test results are ignored

* Only very limited, coarse selection of occluders possible

108 4 Context-sensitive modeling

Occlusion queries

Limitations of ad-hoc solutions
» Restricted to certain specific occluder sets
» Available occluder sets often too coarse-grained and/or hard to control

Alternative to special support: make the grammar language more powerful
Example: CGA++

* Arbitrary options to identify occluders to test against

» Test with spatial query functions

* Allows deterministic and correct results

» Allows avoiding unnecessary shape derivations

» But: more grammar writing effort for cases covered by languages with dedicated support

4 Context-sensitive modeling 109

Occlusion

Occlusion queries only tell the degree of occlusion
¢ Actual occluders remain unknown
* Limits possible reactions

Unless the language is powerful enough:
enabling a certain more advanced reaction requires
an according special operation

Example: remove all occluded parts of the current shape
* New split operation unoccludedParts
¢ Combines occlusion test with Boolean operation

110

4 Context-sensitive modeling

Snapping

Goal: coherent alignment of elements

Approach: adjust split positions
such that they align to close-by lines/planes

Realization
e Emit snap shapes via operation Snap (axes, label)

* Enhance split operations Subdiv and Repeat
to account for these snap shapes

* Snapping behavior is enabled with special axes
HXS”’ I'YSII, and IIZSII

» Considered snap shapes may be limited to those
with a certain label

Repeat ("X", ...)
without snapping

Repeat ("XS", ...)'

with snapping

4 Context-sensitive modeling

111

Snapping

Related approach: avoidance volumes
» Adjust split positions such that overlap with certain shapes is avoided
* Allowed movement of split position is bounded by maximum distance
* Enhanced split operations take a list of shapes to avoid
¢ Application: avoid placing interior walls behind windows

112

4 Context-sensitive modeling

Trimming

Component splitinto faces yields trim planes
* One for each shared edge, bisecting the dihedral angle between the faces
* Planes belong to/are a property of a shape
» Planes (shape-locally) encode information about the adjacent faces (at split time)

A shape's geometry can be trimmed by the shape's trim planes
* Operation trim

» Considers only enabled trim planes
controlled via built-in attributes trim.horizontal and trim.vertical

Trim planes are also considered by operation i
* Loaded geometry is cut by set of enabled trim planes

4 Context-sensitive modeling

113

|\ \{___, trim plane

Trimming |

Example:
Cutting extruded roof planes

emits trim planes

Roof --> ///

comp(f) { ... : RoofPlane }

RoofPlane --»>
translate(rel, world, ©,
roofThickness * sec(roofAngle), ©)
extrude(-roofThickness)

set(trim.horizontal, true) trim -
roofGable(roofAngle,
overhangX + roofThickness * tan(roofAngle),
overhangy)

Roof

square(x) = x*x
sec(x) = sqrt(1l + square(tan(x)))

114

4 Context-sensitive modeling

Spatial queries

Functions analyzing the spatial relationship of shapes provided as arguments

Overlap and containment tests
e overlaps(shapel, shape2)

e touches(shapel, shape2)

e inside(shapel, shape2)

Ray shooting
e shoot(source, targets, yaw, pitch, alpha, beta, range)
* Operates on rectangles
» Shoots a ray from the center of source in the direction given by vaw and pitch
* Returns the closest sub-rectangle of targets with the same size as source

4 Context-sensitive modeling 115

Operations involving multiple shapes

Spectrum of use cases

Subtract other occluding shapes
¢ Just a local refinement of the shape
* Ordinary operation, taking other shapes as argument: minus (otherShapes)

Establish connection between two shapes
* Select one shape as initiator, establish connection from it to other shape
* Becomes part of the refinement of one shape again
* Ordinary operation, taking other shape as argument: connectTo(targetShape)

Merge multiple shapes via Boolean union
» Affects refinement of all involved shapes

116

4 Context-sensitive modeling

Merging multiple shapes

Approach 1:

Coordinated refinement of
multiple shapes

Select one shape
as “master”
X X

Merge other shapes
into this shape

ordinary operation

Abandon the other shapes
replace by empty shape

Involves just ordinary operations

Approach 2:

Replacement of multiple shapes
by one shape , ,

* Shape tree becomes
a shape graph @ ® (©
How to deal with

multiple parents? .

Which properties are
inherited from whom?

* Need new refinement mechanism
Multi-shape rules?

4 Context-sensitive modeling

117

Merging multiple shapes

Approach 1:

Coordinated refinement of
multiple shapes

* Main requirement: other shapes must
already exist when master shape is
refined with multi-shape operation

¢ Realization benefits from language
support for multi-shape coordination

¢ Simple solution possible with events
Identify shapes by participation in event

Issue the respective update operations
in the event's handler

Approach 2:

Replacement of multiple shapes
by one shape

Idea: multi-shape rules
» Operate on a set of shapes
How to specify that set?
* E.g., non-context-free rules
Symbol* ~~ ...

Selection of shapes by symbol limits
possible use cases

* Unclear when to apply rules

118

4 Context-sensitive modeling

Multi-shape operations

Boolean operations
e union(shape(s))

e intersect(shape(s))
e minus (shape(s))

create multiple connections
atatime

current shape plays no role

motivated by underlying
derivation process

=<

Adding interconnections

e connectTo(targetShape)
create a connecting tube to the target shape;
both shapes must be polygons

list of pairs of rectangles

e beam(correspondences, rule,
stiffness, gravity, step, threshold)

connect pairs of rectangles,
creating a deformable beam for each

e chain(correspondences, segments)

connect pairs of rectangles,
creating a rigid chain for each

4 Context-sensitive modeling

119

Multi-shape coordination

Most systems: no coordination across multiple shapes possible
* Refinement decision are performed locally for a shape

» Even if other existing shapes may be consulted:
cannot (directly) influence their further refinement

Usual consequence:

Any decision affecting multiple shapes has to be made
no later than when refining their closest common ancestor

* Shapes themselves don't exist yet
* Must manually infer those properties of these shapes that influence the decision
* Easily becomes impractical, especially if stochastic elements are involved

120 4 Context-sensitive modeling

Need for multi-shape coordination ot
O
Example ./ l \.

* Masses are placed randomly on lot D‘—’D D
* Relative position and occlusion decide wing main garage
whether main house or wing should have door l house J'

* Making decision already when refining lot is not practical l

* Would like to make decision once masses have been created Q Q Q

lot masses final building

4 Context-sensitive modeling 121

Events ...action, actions action,, ...
\@

Rule --> ...action, event(E) action,, ...
Procedure

1. Operation event raises an event
suspends current derivation branch

node, — | —

2. Wait until all derivation branches

node, — | —
have raised some event o

event handler

i3
3. Consult event handler node, — | —

input: the current shapes of all N G| N
participating branches

actions

sync !
outputs a rule for each branch 1
4. Resume derivation branch event E = handler ($nodes)
first executes the returned)
rule in-place an expression: list of shapes — list of rules

122

4 Context-sensitive modeling

Example: overlap resolution

F

L]

&

7

[]

&

For each shape: subtract overlapping larger shapes

4 Context-sensitive modeling 123

Example: overlap resolution

— — minus(m)
minus(| 3) ' 7
— execute rule

3
<
}
!
subhandler
!
|

— — m
3 — g-
o 2 in place
2 [}
5 o 5 i 5
s e
: — 5§ — g ,
< o
7 _g = 7
3 —e 0 — . 3
; & — — eminus([3], () ;

|
|
s.h.
|
|

minus (| 3,72))

event ResolveOverlaps =
partitionByPred($nodes, overlaps(%a, $b),
subtractLargerOnes($groupNodes))

124

4 Context-sensitive modeling

Example: overlap resolution

f 1 = 0 - : N ; 1 D
| : — i ™ i — g — r.m1nus(E), — — -.m1nus(E).~
(R ! i c -
P2 _.!Ei_b £ I - — %eminus((31)>
| H ! i > o [s) -
E-{' Ji — Il____l — P — 'L:mlnus(m,)r
: b 1 =1
i —i = FEE0 L. —\ <
|l - 5 g s>l
5 b > 1 = N @
i 5 E_" _'i”‘-.i-'li—' _;:C" — — % .
1 -
H | ! i 'g ot =\ =1
I @ . —1 & 1— N — <m1nus(-.\ir_‘,,\;1) . —e — _.,-;minus(m,m))
1 1 I B
1 1
i I pmm—— = _— .
'\ G i— |8 — |5 ,:_' = — — — Z<minus (3 1,(2)>
$nodes A
event ResolveOverlaps = ‘pmdwam

partitionByPred($nod
subt

es, overlaps($a, $b),
ractLargerOnes ($groupNodes))

4 Context-sensitive modeling 125

Example: overlap resolution

Event handler

event ResolveOverlaps =
partitionByPred($nodes, overlaps(%$a, $b),
subtractLargerOnes($groupNodes))

Subhandler

func subtractLargerOnes(shapes) =
with(byArea = sort(shapes, area($a) > area($b)),
isLargest = [s](index(byArea, s) == @),
largerOnes = [s](sublist(byArea, @, index(byArea, s))),
select(s : shapes) {
lisLargest(s): minus(largerOnes(s))

)

126

4 Context-sensitive modeling

Events

Applications
* Coordinate further refinement

¢ |dentify related shapes
* |Influence derivation order

* Ensure existence of other shapes

within event handler,
output according actions

participation in the same event

place synchronization point,
waits for other derivation branches

participation in the same event,
place synchronization points

4 Context-sensitive modeling 127

Events

Properties

¢ Enable synchronization among multiple derivation branches

* Enable communication among multiple shapes

* Enable making collective, coordinated decisions on how to proceed individually

Note:

* Ability to synchronize among multiple derivation branches enables
multi-shape coordination

¢ In principle, could repeatedly execute the same decision process
(using all involved shapes), once for each affected shape

e Events with their handlers make this significantly simpler

128 4 Context-sensitive modeling

Event handler

Characteristics
» Arbitrary expression, yielding a list of rules (of same size as the input list of shapes)
* Facilitates reuse & compositing
* Enables dynamic grouping and hierarchical handling

Convenience handler functions
. index of “master” shape
L Offer a concise syntax fOI’ common use cases ‘

o select(s : shapes) { e forall(shapes, "union", @) {
condition] : actions] postUnionActions
| condition2 = subhandler? }

y o foreach(s : shapes) { actions }

4 Context-sensitive modeling 129

Events: advanced features

Scoping mechanism: event groups

» Events operate globally by default,
but can be made local to a subtree via event groups

e Operation group(name) creates a special group node;
all shapes created by succeeding actions become descendants

» Specifying a group name when raising an event makes the event instance
local to the subtree rooted in the closest matching group node ancestor

» Different instances of an event (e.g., one for each floor) can coexist

Signaling
* Handling an event indicates that a certain stage has been reached

* Operation wait allows waiting until an event got handled
for the first time (within a certain subtree)

130 4 Context-sensitive modeling

Task: alignment

Simple option: Alternative:

Use built-in snapping Compute yourself
* Define dominant lines and planes * Query other shapes (if supported)
» Perform snap splits » Compute sizes, positions,

split distances, etc.
- Offers only limited control P '

- May not be powerful enough - Requiresl”some" effort
e.g., no center alignment but solution may be reusable
+ Offers utmost flexibility

4 Context-sensitive modeling 131

Task: alignment

Non-trivial example

* Center-aligned door

® Other elements aligned
on their left and their right

* Respects also size and
frequency constraints

* Elements randomly
selected from candidate pool

132 4 Context-sensitive modeling

Task: cope with overlapping geometry

Simple and limited:
Detect with occlusion query
* Supported by several systems
* Provides only rather coarse information

* Possible reactions rather limited
e.qg., do not place an element (such as a window) if occluded

Remove overlaps with Boolean operations
» Easy to implement with events
* Resulting shapes may have a form that is difficult to deal with

Powerful: f

4 Context-sensitive modeling

133

Task: interconnections

Step 1: determine connection partners
» Collect potential connection sites
» Determine correspondences
o G” (Krecklau11): collection of all candidates done during derivation

e With events: candidates could simply be the event's participants
but it is also possible to gather them from the current shape tree

Step 2: create connecting geometry
* G’ (Krecklau11): given a list of correspondences,
create all connections with a single operation

» CGA++/CE: during refinement of one connection partner,
establish connection to other shape via operation (e.g., connectTo)

operation may have been emitted by event handler

Examples: Favela project (external solution), Krecklaull, Schwarz15

134 4 Context-sensitive modeling

Advanced aspects

Course: Practical Grammar-based Procedural Modeling of Architecture

Advanced Aspects

Peter Wonka

SIGGRAPH
Aslid 2615
KOBE

135

136 5 Advanced aspects

Visual editing of rules and parameters: challenges

How to create a visual user interface to edit a single rule from scratch?
How to create a visual user interface to edit the parameters of rules?

How to create a visual user interface to edit the combination of rules?

How to avoid chaos when naming the rules?

5 Advanced aspects 137

Rule naming

= What is named a window?
¢ Quter frame included?
* Balcony included?
¢ Blinds included?

= Naming rules consistently is
difficult

Image: Wonka

138 5 Advanced aspects

Visual editing of rules and parameters: solutions

Visual Rule Editor
Graph-based rule editors

Manipulators

Procedural high-level primitives

Styles

Design Galleries

5 Advanced aspects 139

Visual rule editing

= Visual interface to define rules and their parameters
= Videos from Lipp2008

140

5 Advanced aspects

Interactive rule visualization

File Rendering Initial Scope Commands

Rules

Add Local Parametel

Variables

balconySimple
balconyO
balconyOcclusion
balconyDaoor
SplitCommand
SplitCommand
tilewall
HelperBalconyA
tileWall
tileWall
tileWaliSimple
TerminalShape

clusion

HalnarRaleanyd

list<BooleanExpressionF>
priority 1
prabability 1

predecessor balconySim

category balcony
list<Node">

occlus

sionType

Video: Lipp 2008

5 Advanced aspects

141

Focus & context editing

File Rendering Initial Scope Commands

Displayed Levels Brushing

3
hWaalization Levels Brushing

Rules

Wariables

balconySimple
balconyOcclusion
balconyOcclusion
balconyDoor
SplitCommand
SplitCommand
tileWall
HelperBalconyA
tileWall
tileWall
tilewallSimple
TerminalShape

HaolnarRalrnnua

Add Local Parameter

list<BooleanExpressionF>

priority 1

probability 1

prede

CeSSOr balconySim

category balcony
list<Node*>

occlu:

sionType

Video: Lipp 2008

142 5 Advanced aspects

Linked tree-view: rule explorer

File Rendering Initial Scope Commands

Rules Variables
i n v | AR J

= L new
@ Epsilon
= — SphitCommand
= | SphitCommand
columnOmament
® Epsilon
@ Epsilon
@ Epsilg
= . columnOrnament
= — SplitCommand
@ TerminalShape
f2 HelperColumnOrnament
& TarminalShane ¥

numberingVariable

[generateNumberingVariables
[snap

axes([0]

[axes[1]

O axes[?]

Splitparts

size [0.928516 Y

Sl bt iR RS e RO Nl X L

41 relative _

Video: Lipp 2008

5 Advanced aspects

143

Parameter view

File Rendering Initial Scope Commands

Slemc e BB Rs e B0 Nl =N | =

Rules Variables

I e A e o)

tileWindowSimple

. wallBackExtrude
tileWindowRandomA
tileWindowRandomB
& TerminalShape
@ Epsilon
tilewindowRandomC
& TerminalShape
@ ScaleCommand
[PushCommand
@ RotateCommand
@& TerminalShape

1_nonCammand

Add Local Parameter

list<BooleanExpressionF>
priority 0 E
probability :‘- -0,23

predecessor tileWindow
category tileWindow
list<Node®>

occlusionType FIeeMIELeLIS

Video: Lipp 2008

144

5 Advanced aspects

Graph-based rule editors

= Examples: Silva2015, Thaller2012, Thaller2013, Patow2012, Houdini

{segments: | @{Crde Segments) |

) Smooth Normals O

Parameters

Label Type

Cirde Segments | System.Int32
Crde Count System.Int32
Step Height System.Int32
Step Width System.Single

Value
25

0,1
L5

() Map Texture j

Attributes

Circle Index | System.Int32 0
Step Index | System.Int32 0

Label Type Value

2: ${Input}{Step Index) * @{Step Height} + @{Circie Segments}: * -{Step Height} * ${Input}{Circle Index} I

Translate

u:

v

5
5

Texture: | RedWood.jog
Map Texture

Image: Silva 2015

5 Advanced aspects 145

Graph-based rule editors

= Naming rules is easier

= Specifying data flow has multiple challenges, e.g.
* How to implement derivation control, e.g. construction stages?
* How to implement recursion?
* How to query context?

146

5 Advanced aspects

Manipulators

= Extend dimension lines used in
technical drawing

= A manipulatoris a user interface
element that enables the
interactive manipulation of
parameters
¢ Length parameters
* Angles
* Discrete parameters

Image: Kelly 2015

5 Advanced aspects 147

Manipulators and handles

= How to place manipulators while
the view is changing?

e Staticin 3D
¢ Dynamic
» Specify view points

= How to place handles and
manipulators in real time?
» Greedy / energy function
» Global optimization

Image: Kelly 2015

148

5 Advanced aspects

Manipulators and handles

= How to specify placement
parameters?

¢ Automatically Ly

¢ Manually in the grammar

-t
' tare
. , EEm
= How to decide what parameters . ERm
should have manipulators? : jﬁ:s

i Lo

¢ Automatically \ ll==

* Manually in the grammar = —.:',:

=

Z

Image: Kelly 2015

5 Advanced aspects 149

\“
Many commercial Y suffer from
world-static dimension lines /&O/

Video: Kelly 2015

150 5 Advanced aspects

Procedural high-level primitives

Krecklau2012

P-Mode: full grammar-based procedural modeling (e.g. scripting)
High-level primitives (HL-primitives):

¢ modules with a fixed set of parameters

* manipulators
® camera views

Manipulators and Camera Views are specified by grammar extensions

5 Advanced aspects 151

High-level primitives examples

= Human stick figure controls chair
parameters

= Facade editing workflow

Images: Krecklau 2012

152 5 Advanced aspects

Styles

Concept used in CityEngine
Multiple styles in a rules file

Styles define attributes and rules

Styles can be derived from other
styles

» All attributes and rules are inherited
from the parent style per default

Image: CityEngine 2015 Online Help System

5 Advanced aspects 153

Style example

attr height = 10
attr type = "residential™
Lot --> MassModel(height, type)

style Commercial
attr height = 5
attr type = "commercial”

style Commercial Restaurant extends Commercial
attr height = 3.5

154 5 Advanced aspects

Design galleries

= Seminal paper
¢ Sample the design space of a parametric model
¢ Visualize the results
= How to compare two models of the design space?
* Compare parameters of the models directly
* Compare renderings of the models
¢ Compare extracted features of the models
= How to present the results?
¢ Hierarchical vs. non-hierarchical

* Table vs. star vs. dimension reduction

= Most relevant research published outside of procedural modeling

5 Advanced aspects

155

» Proposed Solution

Thumbnail galleries

Niiyanrinileanei)
GYYIPVUYIIIIIVIvewY
A R A ERELELAZE LN EREL-EJ
VIVIIIIVYYIIITVYIVES
Ldedpingiengoagiinne
e e b S T R B B R g
Wy oB U YPDee T NEVOY
Aoh b b B o 2

Ly

e~
|

{0d=
Cod~—

—_—

W e (R
- &2

vine
e e
1
111
i1l

|
Bl

Image: Lienhard 2014

156 5 Advanced aspects

Local edits: challenges

= Persistence:
when locally editing a procedural model, how to preserve edits?

= Selection:
how to make semantic, hierarchical selections?

5 Advanced aspects 157

Challenge: selection

uniquely identify subset of shapes

Images: Lipp 2008

158 5 Advanced aspects

Challenge: selection

single shape

Images: Lipp 2008

5 Advanced aspects 159

Challenge: selection

hierarchical selection

Images: Lipp 2008

160 5 Advanced aspects

Challenge: selection

?

no single shape represents selection

semantic selection, property “column”

Images: Lipp 2008

5 Advanced aspects 161

Challenge: persistence

= Workflow:

* User makes a local edit E1
e.g. add a balcony

Video: Lipp 2008

162 5 Advanced aspects

Challenge: persistence

= Workflow:
¢ User makes a local edit E1 5 2n
e.g. add a balcony ,ind'ﬁd,hc
¢ User makes a second local edit E2) 1.37

e.g. change window parameter

= How to ensure edit E1 is preserved?

Video: Lipp 2008

5 Advanced aspects 163

Local edits: solutions

= Semantic tags and instance locators
= Expressions within grammars
= Exception nodes

164

5 Advanced aspects

Exact instance locator

Image: Lipp 2008

5 Advanced aspects

165

Exact instance locator

exactlocator:{E],L @,2, E]}

Image: Lipp 2008

31

166 5 Advanced aspects

Semantic instance locator

L
L
I
»

© semantic locator = { row = 2, column = 3}
© semantic locator = { row = *, column = center+1}

Image: Lipp 2008

5 Advanced aspects 167

How to use instance locators?

Use an external algorithm to modify a result after the derivation

Query instance locators in a graph-based modeling system

Manually write conditional rules

Automatically change the rule base according to user input

168 5 Advanced aspects

Expression within grammars

= Manually extend a grammar using (Init § Floor §
instance locators

= E.g., CityEngine operation
getTreeKey

Use getTreekey to write
conditional rules

= getlreekey returns a sequence
of numbers

= Marked floor would have a key
0-0-1

Wall
Window 2
Wall 2
Wall
Window
Wall
Wall 2
Window
Wall
Wall
Window 2
Wall 2

Image: CityEngine online help

5 Advanced aspects 169

Exception nodes

= Filter data stream in graph based /"“*‘—'-'_‘““"i_f_ e
procedural modeling e e
= e.g.filter based on instance
locators 1 @
7? IntialShape

Image: Patow 2012

170 5 Advanced aspects

Parameter adjustments via feedback loops

Scripting and reporting
Coupling with physical simulation

User-based preference scores

Optimization-based parameter tuning

Optimization-based grammar derivation

5 Advanced aspects 171

Scripting and reporting

= Write a grammar using a reporting function

e Eg.FloorArea --> report("area", geometry.area)
= Analyze the output/ the report
= Feedback

® Change the rules of the grammar manually
» Write a script, e.g. Python, to post-process the result
» Write a script to modify the grammar

172 5 Advanced aspects

Coupling with physical simulation

= Components: = Example:
* Discrete sampling / optimization to * Whiting2009
suggest different variations * Compute stable masonry structures

» Continuous optimization to modify « Focuses on parameter search only

model parameters

Image: Whiting 2009

5 Advanced aspects 173

Optimization framework

parameters
| : Update |

l . Parameters

u

feasible?

i Procedural

model from
output
parameters

Images: Whiting 2009

174 5 Advanced aspects

Typical parameters

building height
thickness of columns, walls, arches

= window size
angle of flying buttresses

Image: Whiting 2009

5 Advanced aspects 175

User-based preference scores

= A stochastic grammar samples MM&Q @mu@

from a distribution P(M)

= Goal: adjust the parameters and
structure of the grammar so that
the distribution matches user
specified preference scores

= Proposed Solution [[an

» User scores generated models

¢ Gaussian Process Regression to
interpolate scores

e Parameter and Structure Learning to
adapt the grammar

Image: Dang 2015

176 5 Advanced aspects

Optimization-based parameter tuning

= Grammar has (geometric) = How to tune grammar parameters
parameters, e.g., to optimize goal functions?
* Mean and std. deviation of height = Proposed Solution
¢ Front and side setback from the road o MCMC
¢ Maximum front width « Neural Networks

¢ Maximum depth
= Indicator functions are higher level
goal functions for the design, e.g.
* Floor area ratio
¢ Sunlight exposure
¢ Visibility of landmarks

5 Advanced aspects 177

Increased sun
exposure (inverse)

Design examples

Increased interior
natural light (inverse)

Images: Vanegas2012

178

5 Advanced aspects

Optimization-based grammar derivation

» Goal: Instead of sampling from the
natural grammar distribution P(M),
how to sample from P(M)*F(M)

* F(M) is some external function to
optimize, e.g. fit inside a volume

= Proposed solution
* MCMC

= Diffusion move (change
parameters)

.=/ =‘"’)//a

= Jump move (change structure)

(7. ¢)
L
(7', ¢")

5 Advanced aspects 179

Design example

= Trees should grow inside given envelops

Image: Talton2011

180

5 Advanced aspects

GPU-based variants

Challenges

Simplifications

Fragment-wise grammar evaluation

Instantiation of detailed asset geometry

Generation of actual geometry to be rendered

5 Advanced aspects 181

Challenges

= Context-sensitive rules are difficult to parallelize
= At the beginning of the derivation, not a lot of shapes are present
= Derivation is recursive

= Parallelizing on the GPU needs data that can be processed with the same
instructions (SIMD)

182

5 Advanced aspects

Simplifications

Limit recursions
Limit context-sensitive rules

Limit the geometry of non-terminal shapes

Limit operations to a subset

5 Advanced aspects 183

Fragment-wise grammar evaluation

Use ray-casting / ray-tracing and derive geometry along the ray

Rendering is similar to ray tracing using hierarchical bounding volumes

Requires a hierarchical grammar with some guarantees
ler2010, Marvie2011, Kuang2013

ample Haeg

= Haegler2010

Kuang2013

184 5 Advanced aspects

Instantiation of detailed asset geometry

= Fragment shader can request detailed assets
= Assets are transformed and scaled appropriately
= Several techniques ensure correct visibility

il

Image: Krecklau2013

5 Advanced aspects 185

Generation of geometry on the GPU

Steinberger et al. EG 2014 (PGA)
Support for context-sensitive queries on the GPU

Rule scheduling to reduce kernel overhead

Rule grouping to reduce divergence & global memory accesses

Operator level parallelism to increase performance
Alternative Solution: Marvie et al. 2012

186 5 Advanced aspects

Context sensitivity in PGA

» Three mechanisms to express dependencies

5 Advanced aspects 187

Context sensitivity in PGA

1. Evaluation Phases A a3
¢ Similar to CGA-priorities ~—Sm ="
* No common predecessor "\ m = 0 / }I\\l
* Large distance between @7 N\
nodes in the tree @

* e.g.is there a higher
building

* Requires complete synchronization between phases
» Most costly way of context-sensitivity

* One set of shapes for each phase
* Only continue to next set if previous has been completed

188 5 Advanced aspects

Context sensitivity in PGA

2. Sibling Queries A -.(3)

* Shapes involved share /\., a é§\\

the same parent Y = Y AR AN

¢ No need to synchronize .°‘.'..'_(_2_)_:‘_';'5‘" ;'. LN\]
globally Ko .(2')‘1_,

¢ e.g.is there a neighboring facade
tile to both sides — it the tile at a corner

* Evaluate query in parent and pass to all children

5 Advanced aspects

189

Context sensitivity in PGA

3. Bilateral Evaluation Queries A (3)
¢ Involved shapes have a 7\ o
common predecessor 7\ / AN
* Distance between the R 7\]

nodes is not too big

* e.g.is there a balcony in front
of the window — create a door instead

» Preprocessing: find common predecessor

» Derivation: pass the common predecessor along the path and duplicate the derivation
process — independent of evaluation order

190

5 Advanced aspects

Rule scheduling

= One queue per evaluation phase

= Local rule grouping

= Global rule grouping

= Workers pull from and push to queues

sEECE e —
. !
L \ — (
T >
| L e
Phase 1 o Phase2
[RTE S it Ak Attt e T
Phase 3 Phase 4

Global Rule Grouping

> > 9 J
. ‘.‘
Cre——"

.
-
[R

5 Advanced aspects 191

Operator-level parallelism

= Operators execute same operation multiple times
* e.g. repeatX creates 20 identical boxes

Make use of parallelism within operators

— use 20 threads for repeat, etc.

More parallelismm — more performance

Equal operations — less divergence

Better memory access patterns — more performance

Require fewer shapes to fill block — more efficient local queuing

192 5 Advanced aspects

Background: other modeling approaches

= Component-based modeling

= Generative modeling:
* GML
¢ Bentley Generative Components
* Boundary solid grammars

5 Advanced aspects 193

Generative modeling language

= “Postscript for Meshes” = Focus is different

= Stack-based mesh modeling * GML: generation of detailed assets
¢ CGA-shape: arrangement of assets

= Operators take parameters from
the stack

194 5 Advanced aspects

Bentley Generative Components

» Graph-based editing

= Good for free form
architecture

joshnelly.com

-

HOK and Bruno Happold

Bentley Generative Components is popular for modeling free-form architecture. For
example, stadiums.

5 Advanced aspects

195

Boundary solid grammars

» Heisserman = Rules
= Operates on b-graphs ¢ Primitive match conditions: matching
in the b-graph
* vertex, edgehalf, loop, face, shell, n the b-graph -
solid * Primitive operations: modifying the
b-graph

* Logic rules / predicates: combine
primitive match conditions or
primitive operations

196 5 Advanced aspects

Conclusions

Conclusions

Course: Practical Grammar-based Procedural Modeling of Architecture

Peter Wonka

SIGGRAPH
AsId 2615
KOBE

197

198 6 Conclusions

Conclusions

» Procedural modeling is currently the best available tool for large-scale urban
modeling of virtual cities

= Many challenges remain in the basic technology and in advanced topics

6 Conclusions 199

Example challenges

= Alignment of architectural elements
» Size independent modeling of medium and complex layouts

= Coordination of elements in different facade parts, e.g. windows in gabled
roofs

= Inverse procedural modeling
= Using procedural modeling in computer vision
= Rule design without programming

200 6 Conclusions

Bibliography

ALIAGA, D. G., RoSEN, P. A., AND BEKINS, D. R. 2007. Style grammars for interactive visualization of
architecture. IEEE Transactions on Visualization and Computer Graphics, 13, 4, 786-797.

BARROSO, S., BESUIEVSKY, G., AND PaTow, G. 2013. Visual copy & paste for procedurally modeled
buildings by ruleset rewriting. Computers ¢ Graphics, 37, 4, 238-246.

BENES, B., ST’AvaA, O., MECH, R., AND MILLER, G. 2011. Guided procedural modeling. Computer
Graphics Forum, 30, 2, 325-334.

BESUIEVSKY, G. AND Patow, G. 2013. Customizable LoD for procedural architecture. Computer
Graphics Forum, 32, 8, 26-34.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connection between partial symmetry and
inverse procedural modeling. ACM Transactions on Graphics, 29, 4, 104:1-104:10.

BURON, C., MARVIE, J.-E., AND GAUTRON, P. 2013. GPU roof grammars. In Eurographics 2013: Short
Papers, pp. 57-60.

DANG, M., LIENHARD, S., CEYLAN, D., NEUBERT, B., WONKA, P., AND PAuLy, M. 2015. Interactive
design of probability density functions for shape grammars. ACM Transactions on Graphics, 34, 6,
206:1-206:13.

HAEGLER, S., WONKA, P, MULLER ARISONA, S., Goor, L. V., AND MULLER, P. 2010. Grammar-based
encoding of facades. Computer Graphics Forum, 29, 4, 1479-1487.

HAVEMANN, S. 2005. Generative Mesh Modeling. Ph.D. thesis, TU Braunschweig.

HEISSERMAN, J. A. 1991. Generative Geometric Design and Boundary Solid Grammars. Ph.D. thesis,
Carnegie Mellon University.

HonmANN, B., HAVEMANN, S., KRISPEL, U., AND FELLNER, D. 2010. A GML shape grammar for
semantically enriched 3D building models. Computers & Graphics, 34, 4, 322-334.

KEeLLy, T., WONKA, P., AND MULLER, P. 2015. Interactive dimensioning of parametric models. Com-
puter Graphics Forum, 34,2, 117-129.

201

202 Bibliography

KRECKLAU, L., BORN, J., AND KOBBELT, L. 2013. View-dependent realtime rendering of procedural
facades with high geometric detail. Computer Graphics Forum, 32, 2, 479-488.

KRECKLAU, L. AND KOBBELT, L. 2011a. Procedural modeling of interconnected structures. Computer
Graphics Forum, 30, 2, 335-344.

KRECKLAU, L. AND KOBBELT, L. 2011b. Realtime compositing of procedural facade textures on the
GPU. In Proceedings of 3D-ARCH 2011, pp. 177-184.

KRreckLAU, L. AND KOBBELT, L. 2012. Interactive modeling by procedural high-level primitives.
Computers & Graphics, 36, 5, 376-386.

KRreckLAU, L., Pavic, D., AND KoBBELT, L. 2010. Generalized use of non-terminal symbols for pro-
cedural modeling. Computer Graphics Forum, 29, 8, 2291-2303.

Kuang, Z., CHAN, B, Yu, Y., AND WANG, W. 2013. A compact random-access representation for
urban modeling and rendering. ACM Transactions on Graphics, 32, 6, 172:1-172:11.

LARIVE, M. AND GAILDRAT, V. 2006. Wall grammar for building generation. In Proceedings of
GRAPHITE 2006, pp. 429-437.

LEBLANGC, L., HOULE, J., AND PouLIN, P. 2011. Component-based modeling of complete buildings.
In Proceedings of Graphics Interface 2011, pp. 87-94.

LIENHARD, S., SPECHT, M., NEUBERT, B., PAULY, M., AND MULLER, P. 2014. Thumbnail galleries for
procedural models. Computer Graphics Forum, 33, 2, 361-370.

Liew, H. 2004. SGML: A Meta-Language for Shape Grammars. Ph.D. thesis, Massachusetts Institute
of Technology.

Lipp, M., WONKA, P., AND WIMMER, M. 2008. Interactive visual editing of grammars for procedural
architecture. ACM Transactions on Graphics, 27, 3, 102:1-102:10.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W,, GIBSON, S., HODGINS, J., KANG, T., MIR-
TICH, B., PFISTER, H., RuML, W,, RYALL, K., SEIMS, J., AND SHIEBER, S. 1997. Design galleries: A

general approach to setting parameters for computer graphics and animation. In Proceedings of
SIGGRAPH 97, pp. 389-400.

MARVIE,].-E., BURON, C., GAUTRON, P.,, HIRTZLIN, P, AND SOURIMANT, G. 2012. GPU shape gram-
mars. Computer Graphics Forum, 31, 7, 2087-2095.

MARVIE, J.-E., GAUTRON, P.,, HIRTZLIN, P., AND SOURIMANT, G. 2011. Render-time procedural per-
pixel geometry generation. In Proceedings of Graphics Interface 2011, pp. 167-174.

MEcH, R. AND PRUSINKIEWICZ, P. 1996. Visual models of plants interacting with their environment.
In Proceedings of SSIGGRAPH 96, pp. 397-410.

Bibliography 203

MULLER, P, WONKA, P.,, HAEGLER, S., ULMER, A., AND GooL, L. V. 2006. Procedural modeling of
buildings. ACM Transactions on Graphics, 25, 3, 614-623.

MULLER, P,, ZENG, G., WONKA, P, AND GooL, L. V. 2007. Image-based procedural modeling of
tacades. ACM Transactions on Graphics, 26, 3, 85:1-85:9.

MusIALSKI, P, WONKA, P, ALIAGA, D. G., WIMMER, M., VAN GOOL, L., AND PURGATHOFER, W. 2013.
A survey of urban reconstruction. Computer Graphics Forum, 32, 6, 146-177.

PARisH, Y. I. H. AND MULLER, P. 2001. Procedural modeling of cities. In Proceedings of SSIGGRAPH
2001, pp. 301-308.

Patow, G. 2012. User-friendly graph editing for procedural modeling of buildings. IEEE Computer
Graphics and Applications, 32, 2, 66-75.

PRUSINKIEWICZ, P, JAMES, M., AND MECH, R. 1994. Synthetic topiary. In Proceedings of SSIGGRAPH
94, pp. 351-358.

PRUSINKIEWICZ, P. AND LINDENMAYER, A. 1990. The Algorithmic Beauty of Plants. Springer-Verlag,
New York.

PRUSINKIEWICZ, P., MUNDERMANN, L., KARWoOwsKI, R., AND LANE, B. 2001. The use of positional
information in the modeling of plants. In Proceedings of SIGGRAPH 2001, pp. 289-300.

SCHWARZ, M. AND MULLER, P. 2015. Advanced procedural modeling of architecture. ACM Transac-
tions on Graphics, 34, 4, 107:1-107:12.

SCHWARZ, M. AND WONKA, P. 2014. Procedural design of exterior lighting for buildings with complex
constraints. ACM Transactions on Graphics, 33, 5, 166:1-166:16.

SiLva, P. B., EISEMANN, E., BIDARRA, R., AND COELHO, A. 2015. Procedural content graphs for urban
modeling. International Journal of Computer Games Technology, 2015, 808904:1-808904:15.

SiLva, P. B.,, MULLER, P, BIDARRA, R., AND COELHO, A. 2013. Node-based shape grammar represen-
tation and editing. In Proceedings of Fourth Workshop on Procedural Content Generation in Games.

SMELIK, R. M., TUTENEL, T., BIDARRA, R., AND BENES, B. 2014. A survey on procedural modelling
for virtual worlds. Computer Graphics Forum, 33, 6, 31-50.

SNYDER, J. M. 1992. Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design
using Interval Analysis. Academic Press, San Diego.

St’avA, O., BENES, B., MEcH, R., ALIAGA, D. G., AND KRISTOF, P. 2010. Inverse procedural modeling
by automatic generation of L-systems. Computer Graphics Forum, 29, 2, 665-674.

STEINBERGER, M., KENZEL, M., KAINZ, B., MULLER, J., WONKA, P, AND SCHMALSTIEG, D. 2014a.
Parallel generation of architecture on the GPU. Computer Graphics Forum, 33, 2, 73-82.

204 Bibliography

STEINBERGER, M., KENZEL, M., KaINzZ, B., WONKA, P,, AND SCHMALSTIEG, D. 2014b. On-the-fly
generation and rendering of infinite cities on the GPU. Computer Graphics Forum, 33, 2, 105-114.

STINY, G. 1980. Introduction to shape and shape grammars. Environment and Planning B, 7, 3,
343-351.

STINY, G. 1982. Spatial relations and grammars. Environment and Planning B, 9, 1, 113-114.
STINY, G. 2006. Shape: Talking about Seeing and Doing. MIT Press.

STINY, G. AND GIPS, J. 1972. Shape grammars and the generative specification of painting and sculp-
ture. In Information Processing 71, pp. 1460-1465.

TarTON, J. O., Lou, Y., LESSER, S., DUKE, J., MECH, R., AND KoLTUN, V. 2011. Metropolis procedural
modeling. ACM Transactions on Graphics, 30,2, 11:1-11:14.

THALLER, W.,, KRrisPEL, U., HAVEMANN, S., AND FELLNER, D. W. 2012. Implicit nested repetition in
dataflow for procedural modeling. In Proceedings of Computation Tools 2012, pp. 45-50.

THALLER, W., KRrISPEL, U., ZMUGG, R., HAVEMANN, S., AND FELLNER, D. W. 2013. Shape grammars
on convex polyhedra. Computers & Graphics, 37, 6, 707-717.

VANEGAS, C. A., ALIAGA, D. G., WONKA, P., MULLER, P., WADDELL, P., AND WATSON, B. 2010. Mod-
elling the appearance and behaviour of urban spaces. Computer Graphics Forum, 29, 1, 25-42.

VANEGAS, C. A., GARCIA-DORADO, 1., ALIAGA, D. G., BENES, B., AND WADDELL, P. 2012. Inverse
design of urban procedural models. ACM Transactions on Graphics, 31, 6, 168:1-168:11.

WATSON, B., MULLER, P, WONKA, P.,, SEXTON, C., VERYOVKA, O., AND FULLER, A. 2008. Procedural
urban modeling in practice. IEEE Computer Graphics and Applications, 28, 3, 18-26.

WHITING, E., OCHSENDORE,]., AND DURAND, F. 2009. Procedural modeling of structurally-sound
masonry buildings. ACM Transactions on Graphics, 28, 5, 112:1-112:9.

WoNKA, P, WIMMER, M., SILLION, F. X, AND RiBARSKY, W. 2003. Instant architecture. ACM Trans-
actions on Graphics, 22, 3, 669-677.

Wu, E, YAN, D.-M., DoNG, W., ZHANG, X., AND WONKA, P. 2014. Inverse procedural modeling of
facade layouts. ACM Transactions on Graphics, 33, 4, 121:1-121:10.

	1 Introduction
	2 Fundamentals
	Background on production systems
	Shapes
	Rules
	Elementary shape operations
	Rules II
	Derivation process

	3 Features of grammar languages
	Operation zoo
	Managing code complexity
	Ease of expression
	Values/objects within grammars
	Shapes as objects
	Beyond "normal" shapes

	4 Context-sensitive modeling
	Examples of tasks involving context sensitivity
	Attributes
	Context information provided by operations
	Involvement of other shapes
	Dedicated support for selected context-sensitive tasks
	Spatial queries
	Operations involving multiple shapes
	Multi-shape coordination
	Solution options for selected tasks

	5 Advanced aspects
	Visual editing of rules and parameters
	Local edits
	Parameter adjustments via feedback loops
	GPU-based variants
	Background: other modeling approaches

	6 Conclusions
	Bibliography

