
Pixel-Shader-Based Curved Triangles

Michael Schwarz∗

University of Erlangen-Nuremberg

Marc Stamminger†

University of Erlangen-Nuremberg

1 Introduction

Since real-world objects often consist of curved surfaces, it is desir-
able to be able to render such surfaces in real-time. One example of
adequate primitives are curved PN triangles [Vlachos et al. 2001],
a special kind of cubic triangular Bézier patches.

To render a surface described by PN triangles, they can be sub-
triangulated such that the resulting mesh approximates the surface
reasonable well. While subdivision to a fixed level is easy and sup-
ported by some ATI hardware, it is usually ill-suited if the screen-
space sizes of the PN triangles vary considerably. Hence a software-
based adaptive tessellation needs to be performed, which however
incurs a certain runtime overhead—not at least since it has to avoid
cracks between adjacent PN triangles subtriangulated to different
LODs. An alternative rendering approach is given by directly ray-
tracing the surface, which is usually done by either Bézier clipping
[Roth et al. 2001] or Newton iteration [Stürzlinger 1998].

In this work, we propose rendering curved PN triangles by drawing
their bounding volumes and performing a ray/PN-triangle intersec-
tion test for each fragment in the pixel shader. This not only avoids
having to adapt the LOD of the surface’s tessellation dynamically
but also keeps the memory footprint and the CPU load low.

Figure 1: Square dipyramid (left), corresponding PN triangles ren-
dered by subtriangulation (center) and with our approach (right).

2 Method Description

Our pixel shader performs up to four Newton iterations to find an
intersection. As starting points for the iterations we take positions
near the three corner vertices as well as the center. We project each
of these points onto the ray corresponding to the current fragment
and sort them by the distance of their projection to the ray’s origin
(method A). Alternatively, we first sort them by their distance to the
ray and then order the first two like above (method B).

A Newton iteration is performed for the first starting position. If
it doesn’t converge within Nmax iteration steps or if the surface is
intersected outside the visible parameter domain, a new Newton it-
eration is initiated for the next starting point. Once a hit is reported,
the remaining starting positions are skipped and the lighting is done.
In case all four Newton iterations fail, we discard the fragment.

To get a tight but simple bounding volume, we perform a 1-to-4
subdivision of the Bézier triangle and take the triangular prism that
encompasses the control points of the four resulting Bézier trian-
gles, exploiting the convex hull property.

∗e-mail: schwarz@cs.fau.de
†e-mail: stamminger@cs.fau.de

To take advantage of early depth culling and thus avoid the unneces-
sary execution of the pixel shader for occluded fragments, we don’t
adapt a fragment’s depth to the actual Bézier surface point but keep
the one of the rendered bounding prism’s face. Though this approx-
imation might introduce occlusion errors in some rare cases, they
can easily be ruled out by a simple preprocessing step.

3 Results and Future Work

We render a single cubic Bézier triangle in arbitrary positions on
an NVIDIA GeForce 7800 GT with Nmax = 10 and a viewport of
size 800×600 at constantly more than 20 fps. Figure 2 shows some
examples along with the total number of performed Newton iter-
ation steps for both method A (middle) and B (right) of ordering
the starting points. Note that the iteration count is rather low for
the front-facing regions; thus restricting to them would allow to de-
crease Nmax. Moreover, models ranging from simple (cf. figure 1)
to more complex ones were successfully tested. However, the frame
rates often dropped from real-time to interactive with 5–10 fps.

Currently, the processing of fragments that get discarded because
they don’t belong to the PN triangle is the most time-consuming
part. Their negative impact on performance is even amplified by the
GPU’s rather coarse thread granularity concerning dynamic flow
control. To tackle this problem and increase the frame rate, we
intend to investigate the subdivision of highly curved input PN tri-
angles, such that the resulting ones are flat enough to safely select
a smaller value for Nmax. In addition, tighter and more complex
bounding volumes should prove favorable.

Required iteration steps: 0 10 20 30

Figure 2: Single cubic Bézier triangle in different positions.

References

ROTH, S. H. M., DIEZI, P., AND GROSS, M. H. 2001. Ray
tracing triangular Bézier patches. Computer Graphics Forum
20, 3 (Sept.), 422–432.

STÜRZLINGER, W. 1998. Ray tracing triangular trimmed free
form surfaces. IEEE Transactions on Visualization and Com-
puter Graphics 4, 3 (July–Sept.), 202–214.

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. L.
2001. Curved PN triangles. In Proceedings of the 2001 ACM
Symposium on Interactive 3D Graphics, 159–166.


